34 research outputs found

    Total Costs of Ownership (TCO)

    No full text

    Reactivity and neutron emission measurements of highly burnt PWR fuel rod samples

    No full text
    Fuel rods with burnup values beyond 50GWd/t are characterised by relatively large amounts of fission products and a high abundance of major and minor actinides. Of particular interest is the change in the reactivity of the fuel as a function of burnup and the capability of modern codes to predict this change. In addition, the neutron emission from burnt fuel has important implications for the design of transport and storage facilities. Measurements have been made of the reactivity effects and the neutron emission rates of highly burnt uranium oxide and mixed oxide fuel rod samples coming from a pressurised water reactor (PWR). The reactivity measurements have been made in a PWR lattice in the PROTEUS zero-energy reactor moderated in turn with: water, a water and heavy water mixture and water containing boron. A combined transport flask and sample changer was used to insert the 400mm long burnt fuel rod segments into the reactor. Both control rod compensation and reactor period methods were used to determine the reactivities of the samples. For the range of burnup values investigated, an interesting exponential relationship has been found between the neutron emission rate and the measured reactivity. [All rights reserved Elsevier

    LWR-PROTEUS verification of reaction rate distributions in modern 10x10 boiling water reactor fuel

    No full text
    HELIOS, CASMO-4, and MCNP4B calculations of reaction rate distributions in a modern, fresh 10 10 boiling water reactor fuel element have been validated using the experimental results of the LWR-PROTEUS Phase I project corresponding to full-density water moderation conditions (core 1 B). The reaction rate distributions measured with a special gamma-scanning machine employing twin germanium detectors consisted of total fission Ftot and 238U-capture C8. The average statistical errors for the gamma scans were better than 0.5% for Ftot and 0.9% for C8. The rod-by-rod measurements were performed on 60 different fuel rods selected from the central part of a test zone consisting of actual, fresh SVEA-96+ fuel elements, thus gaining in realism by departing from conventional fuel rod mockups. In the case of Ftot, the root-mean-square (rms) of the rod-by-rod distribution of differences between calculational and experimental (C-E) values has been found to be 1.1% for HELLOS and for CASMO-4, and 1.3% for MCNP4B. For C8, the rms values of the (C-E) distributions are 1.0, 1.3, and 1.4% as obtained with HELIOS, CASMO-4, and MCNP4B, respectively. The effects of using different data libraries (ENDF/B-V, ENDF/B-VI, and JEF-2.2) with MCNP4B were also studied and have been found to be small
    corecore