511 research outputs found

    Some Mother\u27s Daughter Is Lonesome : For Some Mother\u27s Son In France

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/5424/thumbnail.jp

    Testing equivalence of pure quantum states and graph states under SLOCC

    Full text link
    A set of necessary and sufficient conditions are derived for the equivalence of an arbitrary pure state and a graph state on n qubits under stochastic local operations and classical communication (SLOCC), using the stabilizer formalism. Because all stabilizer states are equivalent to a graph state by local unitary transformations, these conditions constitute a classical algorithm for the determination of SLOCC-equivalence of pure states and stabilizer states. This algorithm provides a distinct advantage over the direct solution of the SLOCC-equivalence condition for an unknown invertible local operator S, as it usually allows for easy detection of states that are not SLOCC-equivalent to graph states.Comment: 9 pages, to appear in International Journal of Quantum Information; Minor typos corrected, updated references

    The Universe and The Quantum Computer

    Full text link
    It is first pointed out that there is a common mathematical model for the universe and the quantum computer. The former is called the histories approach to quantum mechanics and the latter is called measurement based quantum computation. Although a rigorous concrete model for the universe has not been completed, a quantum measure and integration theory has been developed which may be useful for future progress. In this work we show that the quantum integral is the unique functional satisfying certain basic physical and mathematical principles. Since the set of paths (or trajectories) for a quantum computer is finite, this theory is easier to treat and more developed. We observe that the sum of the quantum measures of the paths is unity and the total interference vanishes. Thus, constructive interference is always balanced by an equal amount of destructive interference. As an example we consider a simplified two-slit experimentComment: 15 pages, IQSA 2010 proceeding

    Optical decay from a Fabry-Perot cavity faster than the decay time

    Full text link
    The dynamical response of an optical Fabry-Perot cavity is investigated experimentally. We observe oscillations in the transmitted and reflected light intensity if the frequency of the incoupled light field is rapidly changed. In addition, the decay of a cavity-stored light field is accelerated if the phase and intensity of the incoupled light are switched in an appropriate way. The theoretical model by M. J. Lawrence em et al, JOSA B 16, 523 (1999) agrees with our observations.Comment: submitted to Josa

    Modematching an optical quantum memory

    Full text link
    We analyse the off-resonant Raman interaction of a single broadband photon, copropagating with a classical `control' pulse, with an atomic ensemble. It is shown that the classical electrodynamical structure of the interaction guarantees canonical evolution of the quantum mechanical field operators. This allows the interaction to be decomposed as a beamsplitter transformation between optical and material excitations on a mode-by-mode basis. A single, dominant modefunction describes the dynamics for arbitrary control pulse shapes. Complete transfer of the quantum state of the incident photon to a collective dark state within the ensemble can be achieved by shaping the control pulse so as to match the dominant mode to the temporal mode of the photon. Readout of the material excitation, back to the optical field, is considered in the context of the symmetry connecting the input and output modes. Finally, we show that the transverse spatial structure of the interaction is characterised by the same mode decomposition.Comment: 17 pages, 4 figures. Brief section added treating the transverse spatial structure of the memory interaction. Some references added. A few typos fixe

    Motional effects on the efficiency of excitation transfer

    Full text link
    Energy transfer plays a vital role in many natural and technological processes. In this work, we study the effects of mechanical motion on the excitation transfer through a chain of interacting molecules with application to biological scenarios of transfer processes. Our investigation demonstrates that, for various types of mechanical oscillations, the transfer efficiency is significantly enhanced over that of comparable static configurations. This enhancement is a genuine quantum signature, and requires the collaborative interplay between the quantum-coherent evolution of the excitation and the mechanical motion of the molecules; it has no analogue in the classical incoherent energy transfer. This effect may not only occur naturally, but it could be exploited in artificially designed systems to optimize transport processes. As an application, we discuss a simple and hence robust control technique.Comment: 25 pages, 11 figures; completely revised; version accepted for publicatio

    The impact of low erythrocyte density in human blood on the fitness and energetic reserves of the African malaria vector Anopheles gambiae

    Get PDF
    Background Anaemia is a common health problem in the developing world. This condition is characterized by a reduction in erythrocyte density, primarily from malnutrition and/or infectious diseases such as malaria. As red blood cells are the primary source of protein for haematophagous mosquitoes, any reduction could impede the ability of mosquito vectors to transmit malaria by influencing their fitness or that of the parasites they transmit. The aim of this study was to determine the impact of differences in the density of red blood cells in human blood on malaria vector (Anopheles gambiae sensu stricto) fitness. The hypotheses tested are that mosquito vector energetic reserves and fitness are negatively influenced by reductions in the red cell density of host human blood meals commensurate with those expected from severe anaemia. Methods Mosquitoes (An. gambiae s.s.) were offered blood meals of different packed cell volume(PCV) of human blood consistent with those arising from severe anaemia (15%) and normalPCV (50%). Associations between mosquito energetic reserves (lipid, glucose and glycogen)and fitness measures (reproduction and survival) and blood meal PCV were investigated. Results The amount of protein that malaria vectors acquired from blood feeding (indexed by haematin excretion) was significantly reduced at low blood PCV. However, mosquitoes feeding on blood of low PCV had the same oviposition rates as those feeding on blood of normal PCV, and showed an increase in egg production of around 15%. The long-term survival of An. gambiae s.s was reduced after feeding on low PCV blood, but PCV had no significant impact on the proportion of mosquitoes surviving through the minimal period required to develop and transmit malaria parasites (estimated as 14 days post-blood feeding). The impact of blood PCV on the energetic reserves of mosquitoes was relatively minor. Conclusions These results suggest that feeding on human hosts whose PCV has been depleted due to severe anaemia does not significantly reduce the fitness or transmission potential of malaria vectors, and indicates that mosquitoes may be able exploit resources for reproduction more efficiently from blood of low rather than normal PCV
    corecore