1,213 research outputs found

    Consequences of Postnatally Elevated Insulin-Like Growth Factor-II in Transgenic Mice: Endocrine Changes and Effects on Body and Organ Growth.

    Get PDF
    Insulin-like growth factor-II (IGF-II) is an important regulator of embryonic growth and differentiation, but its function in postnatal life is unclear. To address this point, we generated transgenic mice harboring fusion genes in which a human IGF-II complementary DNA is placed under the transcriptional control of the rat phosphoenolpyruvate carboxykinase promoter. Transgene-specific messenger RNA was detected in liver, kidney, and several parts of the gut. Serum IGF-II levels in transgenic mice were 2-3 times higher than those in controls and increased after starvation. Circulating IGF-I correlated negatively and IGF-binding protein-2 (IGFBP-2) positively with IGF-II levels, suggesting that IGF-I is displaced from IGFBPs by IGF-II and that IGFII is a major regulator of IGFBP-2. Serum levels of IGFBP-3 and IGFBP-4 tended to be higher in phosphoenolpyruvate carboxykinase- IGF-II transgenic mice than in controls, as evaluated by ligand blot analysis. Starvation reduced serum IGF-I, but increased IGFBP-2 in transgenic mice more markedly than in controls. Fasting insulin levels were significantly reduced in transgenic mice, whereas glucose levels were not influenced by elevated IGF-II. The body growth of 4- and 12- week-old mice was not significantly influenced by elevated IGF-II, but transgenic mice displayed increased kidney and testis weight at the age of 4 weeks, and increased adrenal weight at the age of 12 weeks. Our results demonstrate that elevated IGF-II in postnatal life has multiple endocrine consequences and subtle time-specific effects on organ growth

    Current and future directions of breast mri

    Get PDF
    Magnetic resonance imaging (MRI) is the most sensitive exam for detecting breast cancer. The American College of Radiology recommends women with 20% or greater lifetime risk of developing breast cancer be screened annually with MRI. However, other high-risk populations would also benefit. Hartmann et al. reported women with atypical hyperplasia have nearly a 30% incidence of breast cancer at 25-year follow-up. Women with dense breast tissue have up to a 4-fold increased risk of breast cancer when compared to average-risk women; their cancers are more likely to be mammographically occult. Because multiple cohorts of women are at high risk for developing breast cancer, there has been a movement to develop an abbreviated MRI (abMRI) protocol to expand the availability of MRI screening. Studies on abMRI effectiveness have been promising, with Weinstein et al. demonstrating a cancer detection rate of 27.4/1000 in women with dense breasts after a negative digital breast tomosynthesis. Breast MRI is also used to evaluate the extent of disease as part of preoperative assessment in women with newly diagnosed breast cancer, and to assess a patient’s response to neoadjuvant chemotherapy. This paper aims to explore the current uses of MRI and propose future indications and directions

    Strategies for reward-based crowdfunding campaigns

    Get PDF
    AbstractCrowdfunding represents an alternative way of funding entrepreneurial ventures – and is attracting a high amount of interest in research as well as practice. Against this background, this paper analyzes reward-based crowdfunding campaign strategies and their communication tools. To do this, 446 crowdfunding projects were gathered and empirically analyzed. Three different paths of successful crowdfunding projects could be identified and are described in detail. Practical implications of crowdfunding strategies are derived, and are dependent on the required sales effort and the project added value. The terms communicator, networker and self-runner are created for this crowdfunding strategy and filled with practical examples. This paper contributes to the literature in different ways: first, it sheds more light on the developing concept of crowdfunding, with an overview of current academic discussions on crowdfunding. Furthermore, the analysis of success factors for crowdfunding initiatives adds to an emerging area of research and allows entrepreneurs to extract best practice examples for increasing the probability of successful crowdfunding projects under consideration of the key influencing factors of communication

    Ray tracing with multi-radiation transmitters

    Get PDF
    A restriction in using electromagnetic ray tracing for field prediction is given by the far-field condition: the results are only valid in the far-field region of the radiator. In this paper, it will be shown how ray tracing for accurate field computation can also be applied in the near-field regions of transmitters. The reduction of required large distances between transmitter and receiver is achieved by subdividing the transmitter in smaller subtransmitters. Even for complex transmitters, e.g. antennas with objects in close proximity such as metallic carrier platforms, subtransmitter models can be very efficiently generated by using the Multilevel Fast Multipole Method (MLFMM). This well-known integral equation solving technique makes very large problems in computational electromagnetics manageable. The subtransmitters can be directly generated based on this algorithm. A simulation example will show the improved modeling accuracy and options for simplification and refinement will also be discussed

    Quenching of Intervalley Exchange Coupling in the Presence of Momentum-Dark States in TMDCs

    Get PDF
    Monolayers of transition metal dichalcogenides are promising materials for valleytronic applications, since they possess two individually addressable excitonic transitions at the non-equivalent KK and Kâ€ČK' points with different spins, selectively excitable with light of opposite circular polarization. Here, it is of crucial importance to understand the elementary processes determining the lifetime of these optically injected valley excitons. In this study, we perform microscopic calculations based on a Heisenberg equation of motion formalism to investigate the efficiency of the intervalley coupling in the presence (W based TMDCs) and absence (Mo based TMDCs) of energetically low lying momentum-dark exciton states. While we predict a valley exciton lifetime on the order of some hundreds of fs in the absence of low lying momentum-dark states we demonstrate a strong quenching of the valley lifetime in the presence of such states

    Circulating miRNA Biomarkers in Early Breast Cancer Detection following Mammography

    Get PDF
    The currently accepted stepwise model of breast tumorigenesis assumes a gradual transition from normal breast epithelial cells to atypical ductal hyperplasia (ADH), to ductal carcinoma in situ (DCIS) and then to invasive ductal carcinoma (IDC). Percutaneous core needle biopsy (CNB) is the standard technique following an abnormal mammographic finding. However, CNB is less reliable in differentiating simple ADH (sADH) from ADH component coexisted with advanced lesions such as DCIS and/or IDC (cADH). Therefore, to identify and validate novel reliable molecular biomarkers is essential in order to improve the efficiency of therapeutic recommendations, as well as to minimize anxiety and unnecessary procedures. miRNAs function as tumor suppressors or oncogenes and play a critical role in cancer initiation and progression by regulating their target genes. Unlike messenger RNAs (mRNAs), which could be easily degraded, miRNAs are found to be stable not only in body fluid, but also in Formalin-Fixed, Paraffin-Embedded (FFPE) tissues. The stability of miRNAs in FFPE and blood samples suggests that they may be the ideal biomarkers for the early diagnosis and prognosis of cancer, including breast cancer. The goal of this research is to use FFPE and blood samples from the two different groups of patients, analyze the candidate miRNAs to differentiating simple sADH from cADH. In our published studies, we identified a series of miRNAs that are differentially expressed during stepwise transition of breast carcinogenesis, including miR-671-5p. In this study, we showed that the expression of miR-671-5p and miR-638 decreases in ADH, DCIS, and IDC compared with the matched adjacent normal tissues. In addition, we examined the candidate miRNA expression in two groups of ADH blood samples: 28 sADHs and 32 cADHs by qRT-PCR. We found that miR-671-5p expression was decreased in cADHs, but not in sADHs, compared with their matched normal controls. Our recent publication demonstrated that miR-671-5p functions as a tumor suppressor miRNA during breast cancer progression by regulating FOXM1 expression. Using NanoString technology, we found another miRNA, miR-545-3p to be significantly overexpressed in cADHs compared with sADH. miR-545-3p is related to Snai2, which is a member of Snail family transcription factor, encoding a transcription repressor involving in epithelial-mesenchymal transitions (EMT). Our data suggest that miRNAs, such as miR-671-5p and miR-545-3p may be potential circulating biomarkers for early breast cancer detection following mammography and CNB

    Novel fast semi-automated software to segment cartilage for knee MR acquisitions

    Get PDF
    AbstractObjectiveValidation of a new fast software technique to segment the cartilage on knee magnetic resonance (MR) acquisitions. Large studies of knee osteoarthritis (OA) will require fast and reproducible methods to quantify cartilage changes for knee MR data. In this report we document and measure the reproducibility and reader time of a software-based technique to quantify the volume and thickness of articular cartilage on knee MR images.MethodsThe software was tested on a set of duplicate sagittal three-dimensional (3D) dual echo steady state (DESS) acquisitions from 15 (8 OA, 7 normal) subjects. The repositioning, inter-reader, and intra-reader reproducibility of the cartilage volume (VC) and thickness (ThC) were measured independently as well as the reader time for each cartilage plate. The root-mean square coefficient of variation (RMSCoV) was used as metric to quantify the reproducibility of VC and mean ThC.ResultsThe repositioning RMSCoV was as follows: VC=2.0% and ThC=1.2% (femur), VC=2.9% and ThC=1.6% (medial tibial plateau), VC=5.5% and ThC=2.4% (lateral tibial plateau), and VC=4.6% and ThC=2.3% (patella). RMSCoV values were higher for the inter-reader reproducibility (VC: 2.5–8.6%) (ThC: 1.9–5.2%) and lower for the intra-reader reproducibility (VC: 1.6–2.5%) (ThC: 1.2–1.9%). The method required an average of 75.4min per knee.ConclusionsWe have documented a fast reproducible semi-automated software method to segment articular cartilage on knee MR acquisitions
    • 

    corecore