442 research outputs found

    Phase Transitions Driven by Vortices in 2D Superfluids and Superconductors: From Kosterlitz-Thouless to 1st Order

    Full text link
    The Landau-Ginzburg-Wilson hamiltonian is studied for different values of the parameter λ\lambda which multiplies the quartic term (it turns out that this is equivalent to consider different values of the coherence length ξ\xi in units of the lattice spacing aa). It is observed that amplitude fluctuations can change dramatically the nature of the phase transition: for small values of λ\lambda (ξ/a>0.7\xi/a > 0.7), instead of the smooth Kosterlitz-Thouless transition there is a {\em first order} transition with a discontinuous jump in the vortex density vv and a larger non-universal drop in the helicity modulus. In particular, for λ\lambda sufficiently small (ξ/a1\xi/a \cong 1), the density of bound pairs of vortex-antivortex below TcT_c is so low that, vv drops to zero almost for all temperature T<TcT<Tc.Comment: 8 pages, 5 .eps figure

    Vortex dynamics for two-dimensional XY models

    Full text link
    Two-dimensional XY models with resistively shunted junction (RSJ) dynamics and time dependent Ginzburg-Landau (TDGL) dynamics are simulated and it is verified that the vortex response is well described by the Minnhagen phenomenology for both types of dynamics. Evidence is presented supporting that the dynamical critical exponent zz in the low-temperature phase is given by the scaling prediction (expressed in terms of the Coulomb gas temperature TCGT^{CG} and the vortex renormalization given by the dielectric constant ϵ~\tilde\epsilon) z=1/ϵ~TCG22z=1/\tilde{\epsilon}T^{CG}-2\geq 2 both for RSJ and TDGL and that the nonlinear IV exponent a is given by a=z+1 in the low-temperature phase. The results are discussed and compared with the results of other recent papers and the importance of the boundary conditions is emphasized.Comment: 21 pages including 15 figures, final versio

    Thermal analysis of hadron multiplicities from relativistic quantum molecular dynamics

    Full text link
    Some questions arising in the application of the thermal model to hadron production in heavy ion collisions are studied. We do so by applying the thermal model of hadron production to particle yields calculated by the microscopic transport model RQMD(v2.3). We study the bias of incomplete information about the final hadronic state on the extraction of thermal parameters.It is found that the subset of particles measured typically in the experiments looks more thermal than the complete set of stable particles. The hadrons which show the largest deviations from thermal behaviour in RQMD(v2.3) are the multistrange baryons and antibaryons. We also looked at the influence of rapidity cuts on the extraction of thermal parameters and found that they lead to different thermal parameters and larger disagreement between the RQMD yields and the thermal model.Comment: 12 pages, 2 figures, uses REVTEX, only misprint and stylistic corrections, to appear in Physical Review

    Dynamic scaling for 2D superconductors, Josephson junction arrays and superfluids

    Full text link
    The value of the dynamic critical exponent zz is studied for two-dimensional superconducting, superfluid, and Josephson Junction array systems in zero magnetic field via the Fisher-Fisher-Huse dynamic scaling. We find z5.6±0.3z\simeq5.6\pm0.3, a relatively large value indicative of non-diffusive dynamics. Universality of the scaling function is tested and confirmed for the thinnest samples. We discuss the validity of the dynamic scaling analysis as well as the previous studies of the Kosterlitz-Thouless-Berezinskii transition in these systems, the results of which seem to be consistent with simple diffusion (z=2z=2). Further studies are discussed and encouraged.Comment: 19 pages in two-column RevTex, 8 embedded EPS figure

    Dynamics of Hot Bulk QCD Matter: from the Quark-Gluon Plasma to Hadronic Freeze-Out

    Get PDF
    We introduce a combined macroscopic/microscopic transport approach employing relativistic hydrodynamics for the early, dense, deconfined stage of the reaction and a microscopic non-equilibrium model for the later hadronic stage where the equilibrium assumptions are not valid anymore. Within this approach we study the dynamics of hot, bulk QCD matter, which is expected to be created in ultra-relativistic heavy ion collisions at the SPS, the RHIC and the LHC. Our approach is capable of self-consistently calculating the freeze-out of the hadronic system, while accounting for the collective flow on the hadronization hypersurface generated by the QGP expansion. In particular, we perform a detailed analysis of the reaction dynamics, hadronic freeze-out, and transverse flow.Comment: 55 pages, 15 figure

    Experimental Study of the Shortest Reset Word of Random Automata

    Get PDF
    In this paper we describe an approach to finding the shortest reset word of a finite synchronizing automaton by using a SAT solver. We use this approach to perform an experimental study of the length of the shortest reset word of a finite synchronizing automaton. The largest automata we considered had 100 states. The results of the experiments allow us to formulate a hypothesis that the length of the shortest reset word of a random finite automaton with nn states and 2 input letters with high probability is sublinear with respect to nn and can be estimated as $1.95 n^{0.55}.

    Two-proton correlations from 158 AGeV Pb+Pb central collisions

    Get PDF
    The two-proton correlation function at midrapidity from Pb+Pb central collisions at 158 AGeV has been measured by the NA49 experiment. The results are compared to model predictions from static thermal Gaussian proton source distributions and transport models RQMD and VENUS. An effective proton source size is determined by minimizing CHI-square/ndf between the correlation functions of the data and those calculated for the Gaussian sources, yielding 3.85 +-0.15(stat.) +0.60-0.25(syst.) fm. Both the RQMD and the VENUS model are consistent with the data within the error in the correlation peak region.Comment: RevTeX style, 6 pages, 4 figures, 1 table. More discussion are added about the structure on the tail of the correlation function. The systematic error is revised. To appear in Phys. Lett.

    Event-by-event fluctuations of average transverse momentum in central Pb+Pb collisions at 158 GeV per nucleon

    Get PDF
    We present first data on event-by-event fluctuations in the average transverse momentum of charged particles produced in Pb+Pb collisions at the CERN SPS. This measurement provides previously unavailable information allowing sensitive tests of microscopic and thermodynamic collision models and to search for fluctuations expected to occur in the vicinity of the predicted QCD phase transition. We find that the observed variance of the event-by-event average transverse momentum is consistent with independent particle production modified by the known two-particle correlations due to quantum statistics and final state interactions and folded with the resolution of the NA49 apparatus. For two specific models of non-statistical fluctuations in transverse momentum limits are derived in terms of fluctuation amplitude. We show that a significant part of the parameter space for a model of isospin fluctuations predicted as a consequence of chiral symmetry restoration in a non-equilibrium scenario is excluded by our measurement.Comment: 6 pages, 2 figures, submitted to Phys. Lett.
    corecore