556 research outputs found

    Enhancement of the luminescence properties of Eu (III) containing paramagnetic saponite clays

    Get PDF
    In this study, 1,10-phenanthroline molecules were introduced in the interlayer space of a paramagnetic synthetic saponite clay containing both Eu3+ and Gd3+ ions in structural positions. Two samples with different loading of phenanthroline dye were prepared. The resulting hybrid materials possessed improved optical emission properties due to an efficient antenna effect from the phenanthroline to the Eu3+ centers; this effect was demonstrated to be higher than the metal-to-metal Gd3+-Eu3+ energy transfer previously studied. Insights on the relaxometric properties in aqueous solution of the solids after incorporation of the antenna groups were also obtained through NMR relaxometric analyses

    DTPA-Functionalized silica-based monoliths for the removal of transition and lanthanide ions from aqueous phase

    Get PDF
    Transition and rare-earth metals are essential raw materials used in a wide range of technological applications; moreover, their consumption is often associated with high production of wastes­. Therefore, their recycling and recovery from end-of-life products or metal-contaminated aqueous environments is of considerable importance from a circular economy perspective. In our study, synthetic mesoporous silica monoliths, obtained by sol-gel synthesis[1] and functionalized with chelating groups are used for the recovery of metal ions from aqueous matrices (MONO-DTPA). The monoliths were characterized using a multi-technique approach and were tested in the recovery of paramagnetic Gd3+, Cu2+ and Co2+ ions from aqueous solutions, using 1H-NMR relaxometry to evaluate their uptake performance in real time and in simple conditions[2]. Detailed information on the kinetics of the capture process was also extrapolated. Finally, the possibility to regenerate the solid sorbents was evaluated. The modified silica monoliths were able to recover an appreciable amount of both di- and trivalent metal ions. The best results were obtained in the case of Cu2+ after 24 hours of contact, with a recovered amount of 0.29 mmol/g corresponding to 18.48 mg/g (Fig. 1, A). The capture performance of MONO-DTPA has been shown to be superior to that of natural or synthetic materials commonly used for metal ion removal (Fig 1, B). [1] V. Miglio, C. Zaccone, C. Vittoni, I. Braschi, E. Buscaroli, G. Golemme, L. Marchese and C. Bisio, Molecules 2021, 26, 1316 [2] S. Marchesi, S. Nascimbene, M. Guidotti, C. Bisio and F. Carniato, Dalton Trans. 2022, 51, 4502–4509

    Bimanual coupling effect during a proprioceptive stimulation

    Get PDF
    Circle-line drawing paradigm is used to study bimanual coupling. In the standard paradigm, subjects are asked to draw circles with one hand and lines with the other hand; the influence of the concomitant tasks results in two "elliptical" figures. Here we tested whether proprioceptive information evoked by muscle vibration inducing a proprioceptive illusion (PI) of movement at central level, was able to affect the contralateral hand drawing circles or lines. A multisite 80 Hz-muscle vibration paradigm was used to induce the illusion of circle- and line-drawing on the right hand of 15 healthy participants. During muscle vibration, subjects had to draw a congruent or an incongruent figure with the left hand. The ovalization induced by PI was compared with Real and Motor Imagery conditions, which already have proved to induce bimanual coupling. We showed that the ovalization of a perceived circle over a line drawing during PI was comparable to that observed in Real and Motor Imagery condition. This finding indicates that PI can induce bimanual coupling, and proprioceptive information can influence the motor programs of the contralateral hand

    Monitoring the solid-state dewetting of densely packed arrays of Au nanoparticles

    Get PDF
    We report a real time, in-situ spectroscopic ellipsometry study of the temperature-induced solid-state dewetting of Au nanowires into nanoparticles. Very large spectral variations are observed at different temperatures. Analysis of the key features in the acquired spectra reveals two different regimes: up to 300 \ub0C the variation in the optical response is dominated by solid-state dewetting, while above that temperature, smaller variations not compatible with such mechanism are visible. Therefore our ellipsometry measurements allow us to determine in real time at which temperature the solid-state dewetting ceases and the morphology of our sample becomes stable. We point out that this observation is possible thanks to the higher sensitiviy of ellipsometry with respect to reflectance/transmittance measurements

    Bifunctional Paramagnetic and Luminescent Clays Obtained by Incorporation of Gd3+and Eu3+Ions in the Saponite Framework

    Get PDF
    A novel bifunctional saponite clay incorporating gadolinium (Gd3+) and europium (Eu3+) in the inorganic framework was prepared by one-pot hydrothermal synthesis. The material exhibited interesting luminescent and paramagnetic features derived from the co-presence of the lanthanide ions in equivalent structural positions. Relaxometry and photoluminescence spectroscopy shed light on the chemical environment surrounding the metal sites, the emission properties of Eu3+, and the dynamics of interactions between Gd3+ and the inner-sphere water placed in the saponite gallery. The optical and paramagnetic properties of this solid make it an attractive nanoplatform for bimodal diagnostic applications

    Tamm Plasmon Resonance as Optical Fingerprint of Silver/Bacteria Interaction

    Get PDF
    The incorporation of responsive elements into photonic crystals is an effective strategy for fabricating active optical components to be used as sensors, actuators, and modulators. In particular, the combination of simple multilayered dielectric mirrors with optically responsive plasmonic materials has proven to be successful. Recently, Tamm plasmon (TP) modes have emerged as powerful tools for these purposes. These modes arise at the interface between a distributed Bragg reflector (DBR) and a plasmonic layer and can be excited at a normal incidence angle. Although the TP field is located usually at the DBR/metal interface, recent studies have demonstrated that nanoscale corrugation of the metal layer permits access to the TP mode from outside, thus opening exciting perspectives for many real-life applications. In this study, we show that the TP resonance obtained by capping a DBR with a nanostructured layer of silver is responsive to Escherichia coli. Our data indicate that the modification of the TP mode originates from the well-known capability of silver to interact with bacteria, within a process in which the release of Ag+ ions leaves an excess of negative charge in the metal lattice. Finally, we exploited this effect to devise a case study in which we optically differentiated between the presence of proliferative and nonproliferative bacteria using the TP resonance as a read-out. These findings make these devices promising all-optical probes for bacterial metabolic activity, including their response to external stressors

    Unexpectedly large electron correlation measured in Auger spectra of ferromagnetic iron thin films: orbital-selected Coulomb and exchange contributions

    Full text link
    A set of electron-correlation energies as large as 10 eV have been measured for a magnetic 2ML Fefilm deposited on Ag(001). By exploiting the spin selectivity in angle-resolved Auger-photoelectroncoincidence spectroscopy and the Cini-Sawatzky theory, the core-valence-valence Auger spectrumof a spin-polarized system have been resolved: correlation energies have been determined for eachindividual combination of the two holes created in the four sub-bands involved in the decay: majorityand minority spin, as well asegandt2g. The energy difference between final states with paralleland antiparallel spin of the two emitted electrons is ascribed to the spin-flip energy for the final ionstate, thus disentangling the contributions of Coulomb and exchange interactions.Comment: 5 pages, 2 figures, 1 tabl

    Population pharmacokinetic study of benznidazole in pediatric chagas disease suggests efficacy despite lower plasma concentrations than in adults

    Get PDF
    Introduction: Chagas disease, caused by the parasite Trypanosoma cruzi, can lead to long term cardiac morbidity. Treatment of children with benznidazole is effective, but no pediatric pharmacokinetics data are available and clinical pharmacology information on the drug is scarce. Patients and Methods: Prospective population pharmacokinetic (PK) cohort study in children 2-12 years old with Chagas disease treated with oral benznidazole 5-8 mg/kg/day BID for 60 days. (clinicaltrials.gov #NCT00699387). Results: Forty children were enrolled in the study. Mean age was 7.3 years. A total of 117 samples were obtained from 38 patients for PK analysis. A one compartment model best fit the data. Weight-corrected clearance rate (CL/F) showed a good correlation with age, with younger patients having a significantly higher CL/F than older children and adults. Simulated median steady-state benznidazole concentrations, based on model parameters, were lower for children in our study than for adults and lowest for children under 7 years of age. Treatment was efficacious in the 37 patients who completed the treatment course, and well tolerated, with few, and mild, adverse drug reactions (ADRs). Discussion: Observed benznidazole plasma concentrations in children were markedly lower than those previously reported in adults (treated with comparable mg/kg doses), possibly due to a higher CL/F in smaller children. These lower blood concentrations were nevertheless associated to a high therapeutic response in our cohort. Unlike adults, children have few adverse reactions to the drug, suggesting that there may be a direct correlation between drug concentrations and incidence of ADRs. Our results suggest that studies with lower doses in adults may be warranted. Trial Registration: ClinicalTrails.gov NCT00699387.Facultad de Ciencias Exacta
    • …
    corecore