9,990 research outputs found

    Bond Order via Light-Induced Synthetic Many-body Interactions of Ultracold Atoms in Optical Lattices

    Full text link
    We show how bond order emerges due to light mediated synthetic interactions in ultracold atoms in optical lattices in an optical cavity. This is a consequence of the competition between both short- and long-range interactions designed by choosing the optical geometry. Light induces effective many-body interactions that modify the landscape of quantum phases supported by the typical Bose-Hubbard model. Using exact diagonalization of small system sizes in one dimension, we present the many-body quantum phases the system can support via the interplay between the density and bond (or matter-wave coherence) interactions. We find numerical evidence to support that dimer phases due to bond order are analogous to valence bond states. Different possibilities of light-induced atomic interactions are considered that go beyond the typical atomic system with dipolar and other intrinsic interactions. This will broaden the Hamiltonian toolbox available for quantum simulation of condensed matter physics via atomic systems.Comment: Accepted in New Journal of Physic

    Non-Hermitian Dynamics in the Quantum Zeno Limit

    Full text link
    Measurement is one of the most counter-intuitive aspects of quantum physics. Frequent measurements of a quantum system lead to quantum Zeno dynamics where time evolution becomes confined to a subspace defined by the projections. However, weak measurement performed at a finite rate is also capable of locking the system into such a Zeno subspace in an unconventional way: by Raman-like transitions via virtual intermediate states outside this subspace, which are not forbidden. Here, we extend this concept into the realm of non-Hermitian dynamics by showing that the stochastic competition between measurement and a system's own dynamics can be described by a non-Hermitian Hamiltonian. We obtain an analytic solution for ultracold bosons in a lattice and show that a dark state of the tunnelling operator is a steady state in which the observable's fluctuations are zero and tunnelling is suppressed by destructive matter-wave interference. This opens a new venue of investigation beyond the canonical quantum Zeno dynamics and leads to a new paradigm of competition between global measurement backaction and short-range atomic dynamics.Comment: Accepted in Phys. Rev.

    Criticality in the collapse of spherically symmetric massless scalar fields in semi-classical loop quantum gravity

    Get PDF
    In a recent paper we showed that the collapse to a black hole in one-parameter families of initial data for massless, minimally coupled scalar fields in spherically symmetric semi-classical loop quantum gravity exhibited a universal mass scaling similar to the one in classical general relativity. In particular, no evidence of a mass gap appeared as had been suggested by previous studies. The lack of a mass gap indicated the possible existence of a self-similar critical solution as in general relativity. Here we provide further evidence for its existence. Using an adaptive mesh refinement code, we show that "echoes" arise as a result of the discrete self-similarity in space-time. We also show the existence of "wiggles" in the mass scaling relation, as in the classical theory. The results from the semi-classical theory agree well with those of classical general relativity unless one takes unrealistically large values for the polymerization parameter.Comment: 7 pages, RevTe
    • …
    corecore