19,831 research outputs found

    Free-fall accretion and emitting caustics in wind-fed X-ray sources

    Get PDF
    In wind-fed X-ray binaries the accreting matter is Compton cooled and falls freely onto the compact object. The matter has a modest angular momentum ll and accretion is quasi-spherical at large distances from the compact object. Initially small non-radial velocities grow in the converging supersonic flow and become substantial in the vicinity of the accretor. The streamlines with l>(GMR)1/2l>(GMR_*)^{1/2} (where MM and RR_* are the mass and radius of the compact object) intersect outside RR_* and form a two-dimensional caustic which emits X-rays. The streamlines with low angular momentum, l<(GMR)1/2l<(GMR_*)^{1/2}, run into the accretor. If the accretor is a neutron star, a large X-ray luminosity results. We show that the distribution of accretion rate/luminosity over the star surface is sensitive to the angular momentum distribution of the accreting matter. The apparent luminosity depends on the side from which the star is observed and can change periodically with the orbital phase of the binary. The accretor then appears as a `Moon-like' X-ray source.Comment: 8 pages, accepted to MNRA

    Electrically Controlled Pumping of Spin Currents in Topological Insulators

    Full text link
    Pure spin currents are shown to be generated by an electrically controlled quantum pump applied at the edges of a topological insulator. The electric rather than the more conventional magnetic control offers several advantages and avoids, in particular, the necessity of delicate control of magnetization dynamics over tiny regions. The pump is implemented by pinching the sample at two quantum point contacts and phase modulating two external gate voltages between them. The spin current is generated for the full range of parameters. On the other hand, pumping via amplitude modulation of the inter-boundary couplings generates both charge and spin currents, with a pure charge current appearing only for special values of the parameters for which the Bohm-Aharonov flux takes integer values. Our setup can therefore serve to fingerprint the helical nature of the edges states with the zeros of the pumped spin and charge currents occurring at distinct universal locations where the Fabry-Perot or the Aharonov-Bohm phases take integer values.Comment: 5 pages, 5figure

    Feasibility of the optical fiber clock

    Get PDF
    We explore the feasibility of a compact high-precision Hg atomic clock based on a hollow core optical fiber. We evaluate the sensitivity of the 1S0^1S_0-3P0^3P_0 clock transition in Hg and other divalent atoms to the fiber inner core surface at non-zero temperatures. The Casimir-Polder interaction induced 1S0^1S_0-3P0^3P_0 transition frequency shift is calculated for the atom inside the hollow capillary as a function of atomic position, capillary material, and geometric parameters. For 199Hg^{199}\mathrm{Hg} atoms on the axis of a silica capillary with inner radius 15μm\geq 15 \,\mu \mathrm{m} and optimally chosen thickness d1μmd\sim 1 \,\mu \mathrm{m}, the atom-surface interaction induced 1S0^1S_0-3P0^3P_0 clock transition frequency shift can be kept on the level δν/νHg1019\delta\nu/\nu_{\mathrm{Hg}} \sim10^{-19}. We also estimate the atom loss and heating due to the collisions with the buffer gas, lattice intensity noise induced heating, spontaneous photon scattering, and residual birefringence induced frequency shifts.Comment: 8 pages, 5 figures, submitte

    New insights into the Jahn–Teller effect in NO_3 via the dark à 2E" state

    Get PDF
    The recent cavity ringdown (CRD) measurement of the forbidden Ã^2 E"←X~^2 A2' transition of the nitrate radical NO_3 reveals a rich, well-resolved spectrum in the near-infrared. The spectroscopic detail provides a new window onto the Jahn–Teller (JT) and pseudo-Jahn–Teller (PJT) effects in NO_3. This paper reviews the current experimental evidence for vibronic coupling in the à state and discusses the theoretical issues in the context of new preliminary EOMIP/CCSD and CCSD(T) calculations. The theoretical results to date indicate that the à 2E" state of NO_3 undergoes a relatively strong JT distortion which may require inclusion of higher order vibronic couplings. The intensity of this transition may involve multiple intensity borrowing mechanisms via PJT coupling among the X~, à and B~ states

    A Model with Propagating Spinons beyond One Dimension

    Full text link
    For the model of frustrated spin-1/2 Heisenberg magnet described in A. A. Nersesyan and A. M. Tsvelik, (Phys. Rev. B{\bf 67}, 024422 (2003)) we calculate correlation functions of staggered magnetization and dimerization. The model is formulated as a collection of antiferromagnetic chains weakly coupled by a frustrated exchange interaction. The calculation done for the case of four chains demonstrates that these functions do not vanish. Since the correlation functions in question factorize into a product of correlation functions of spinon creation and annihilation operators, this constitutes a proof that spinons in this model propagate in the direction perpendicular to the chains.Comment: revised version to appear in Phys. Rev B., 8 pages, a reference adde
    corecore