13,539 research outputs found

    Mechanical Characterization of Fourth Generation Composite Humerus

    Get PDF
    Mechanical data on upper extremity surrogate bones, supporting use as biomechanical tools, is limited. The objective of this study was to characterize the structural behaviour of the fourth-generation composite humerus under simulated physiologic bending, specifically, stiffness, rigidity, and mid-diaphysial surface strains. Three humeri were tested in four-point bending, in anatomically defined anteroposterior (AP) and mediolateral (ML) planes. Stiffness and rigidity were derived using load–displacement data. Principal strains were determined at the anterior, posterior, medial, and lateral surfaces in the humeral mid-diaphysial transverse plane of one specimen using stacked rosettes. Linear structural behaviour was observed within the test range. Average stiffness and rigidity were greater in the ML (918 ± 18 N/mm; 98.4 ± 1.9 Nm2) than the AP plane (833 ± 16 N/mm; 89.3 ± 1.6 Nm2), with little inter-specimen variability. The ML/AP rigidity ratio was 1.1. Surface principal strains were similar at the anterior (5.41 µε/N) and posterior (5.43 µε/N) gauges for AP bending, and comparatively less for ML bending, i.e. 5.1 and 4.5 µε/N, at the medial and lateral gauges, respectively. This study provides novel strain and stiffness data for the fourth-generation composite humerus and also adds to published construct rigidity data. The presented results support the use of this composite bone as a tool for modelling and experimentation

    Optimization of scale-free network for random failures

    Full text link
    It has been found that the networks with scale-free distribution are very resilient to random failures. The purpose of this work is to determine the network design guideline which maximize the network robustness to random failures with the average number of links per node of the network is constant. The optimal value of the distribution exponent and the minimum connectivity to different network size are given in this paper. Finally, the optimization strategy how to improve the evolving network robustness is given.Comment: 6 pages, 1 figur

    Optimization of robustness of scale-free network to random and targeted attacks

    Full text link
    The scale-fee networks, having connectivity distribution P(k)kαP(k)\sim k^{-\alpha} (where kk is the site connectivity), is very resilient to random failures but fragile to intentional attack. The purpose of this paper is to find the network design guideline which can make the robustness of the network to both random failures and intentional attack maximum while keeping the average connectivity per node constant. We find that when $=3$ the robustness of the scale-free networks reach its maximum value if the minimal connectivity $m=1$, but when is larger than four, the networks will become more robust to random failures and targeted attacks as the minimal connectivity mm gets larger

    Halting viruses in scale-free networks

    Full text link
    The vanishing epidemic threshold for viruses spreading on scale-free networks indicate that traditional methods, aiming to decrease a virus' spreading rate cannot succeed in eradicating an epidemic. We demonstrate that policies that discriminate between the nodes, curing mostly the highly connected nodes, can restore a finite epidemic threshold and potentially eradicate a virus. We find that the more biased a policy is towards the hubs, the more chance it has to bring the epidemic threshold above the virus' spreading rate. Furthermore, such biased policies are more cost effective, requiring less cures to eradicate the virus

    On a new NBUE property in multivariate sense: an application

    Get PDF
    Since multivariate lifetime data frequently occur in applications, various properties of multivariate distributions have been previously considered to model and describe the main concepts of aging commonly considered in the univariate setting. The generalization of univariate aging notions to the multivariate case involves, among other factors, appropriate definitions of multivariate quantiles and related notions, which are able to correctly describe the intrinsic characteristics of the concepts of aging that should be generalized, and which provide useful tools in the applications. A new multivariate version of the well-known New Better than Used in Expectation univariate aging notion is provided, by means of the concepts of the upper corrected orthant and multivariate excess-wealth function. Some of its properties are described, with particular attention paid to those that can be useful in the analysis of real data sets. Finally, through an example it is illustrated how the new multivariate aging notion influences the final results in the analysis of data on tumor growth from the Comprehensive Cohort Study performed by the German Breast Cancer Study Grou

    Continuous Time Monte Carlo and Spatial Ordering in Driven Lattice Gases: Application to Driven Vortices in Periodic Superconducting Networks

    Full text link
    We consider the two dimensional (2D) classical lattice Coulomb gas as a model for magnetic field induced vortices in 2D superconducting networks. Two different dynamical rules are introduced to investigate driven diffusive steady states far from equilibrium as a function of temperature and driving force. The resulting steady states differ dramatically depending on which dynamical rule is used. We show that the commonly used driven diffusive Metropolis Monte Carlo dynamics contains unphysical intrinsic randomness that destroys the spatial ordering present in equilibrium (the vortex lattice) over most of the driven phase diagram. A continuous time Monte Carlo (CTMC) is then developed, which results in spatially ordered driven states at low temperature in finite sized systems. We show that CTMC is the natural discretization of continuum Langevin dynamics, and argue that it gives the correct physical behavior when the discrete grid represents the minima of a periodic potential. We use detailed finite size scaling methods to analyze the spatial structure of the steady states. We find that finite size effects can be subtle and that very long simulation times can be needed to arrive at the correct steady state. For particles moving on a triangular grid, we find that the ordered moving state is a transversely pinned smectic that becomes unstable to an anisotropic liquid on sufficiently large length scales. For particles moving on a square grid, the moving state is a similar smectic at large drives, but we find evidence for a possible moving solid at lower drives. We find that the driven liquid on the square grid has long range hexatic order, and we explain this as a specifically non-equilibrium effect. We show that, in the liquid, fluctuations are diffusive in both the transverse and longitudinal directions.Comment: 29 pages, 35 figure

    A Long Helix from the Central Region of Smooth Muscle Caldesmon

    Get PDF
    The central region of smooth muscle caldesmon is predicted to form α-helices on the basis of its primary structure. We have isolated a fragment (CT54) that contains this region. The hydrodynamic properties and the electron microscopic images suggest that CT54 is an elongated (35 nm), monomeric molecule. The circular dichroic spectrum yields an overall α-helical content of 55–58%. These results are consistent with the model that the middle portion of CT54 forms a long stretch of single-stranded α-helix. Such a structure, if it in fact exists, is thought to be stabilized by numerous salt bridges between charged residues at positions i and i+4. The structural characteristics of this fragment not only represent an unusual protein configuration but also provide information about the functional role of caldesmon in smooth muscle contraction. Originally published Journal of Biological Chemistry, Vol. 266, No. 21, July 199

    Vitamin D deficiency and prognostics among patients with pancreatic adenocarcinoma

    Get PDF
    BACKGROUND: The prevalence of vitamin D deficiency among patients with cancer has been previously reported. Because vitamin D is fat soluble, patients with pancreatic adenocarcinoma may have an especially high risk of vitamin D deficiency in association with ongoing and varying degrees of malabsorption. However, little is known about the correlation between vitamin D status and prognosis in these patients. METHODS: We conducted a retrospective review of vitamin D status in patients with pancreatic adenocarcinoma who were treated at Siteman Cancer Center. Patients’ demographic information, clinical staging at the time of vitamin D assessment, vitamin D levels, and survival data were collected. Vitamin D deficiency was defined as a serum 25-hydroxyvitamin D (25[OH]D) level of less than 20 ng/mL, and vitamin D insufficiency was defined as a 25(OH)D level of between 20 ng/mL and 30 ng/mL. RESULTS: Between December 2007 and June 2011, 178 patients with pancreatic adenocarcinoma had their vitamin D levels checked at the time of initial visit at this center. Of these 178 patients, 87 (49%) had vitamin D deficiency, and 44 (25%) had vitamin D insufficiency. The median 25(OH)D level was significantly lower among nonwhite patients and among patients with stage I and II disease. A 25(OH)D level of less than 20 ng/mL was found to be associated with poor prognosis (p = 0.0019) in patients with stage III and IV disease. CONCLUSIONS: Vitamin D insufficiency and deficiency were prevalent among patients with pancreatic adenocarcinoma. The vitamin D level appears to be prognostic for patients with advanced pancreatic adenocarcinoma, and its effects should be further examined in a prospective study
    corecore