96 research outputs found

    Collinear versus non-collinear magnetic order in Pd atomic clusters: ab-initio calculations

    Full text link
    We present a thorough theoretical assessment of the stability of non-collinear spin arrangements in small palladium clusters. We generally find that ferromagnetic order is always preferred, but that antiferromagnetic and non-collinear configurations of different sorts exist and compete for the first excited isomers. We also show that the ground state is insensitive to the choice of atomic configuration for the pseudopotential used and to the approximation taken for the exchange and correlation potential. Moreover, the existence and relative stability of the different excited configurations also depends weakly on the approximations employed. These results provide strong evidence on the transferability of pseudopotential and exchange and correlation functionals for palladium clusters as opposed to the situation found for the bulk phases of palladium.Comment: 5 pages, 4 figure

    Exact thermodynamics of a planar array of Ginzburg-Landau chains with nn and nnn interactions

    Full text link
    The exact expression of the free energy of a planar array of a Ginzburg-Landau chains with nn and nnn interaction is obtained. The critical behaviour of the specific heat is not qualitatively modified by taking into account the nnn interaction

    Structural and energetic properties of nickel clusters: 2≀N≀1502 \le N \le 150

    Full text link
    The four most stable structures of NiN_N clusters with NN from 2 to 150 have been determined using a combination of the embedded-atom method in the version of Daw, Baskes and Foiles, the {\it variable metric/quasi-Newton} method, and our own {\it Aufbau/Abbau} method. A systematic study of energetics, structure, growth, and stability of also larger clusters has been carried through without more or less severe assumptions on the initial geometries in the structure optimization, on the symmetry, or on bond lengths. It is shown that cluster growth is predominantly icosahedral with islandsislands of {\it fcc}, {\it tetrahedral} and {\it decahedral} growth. For the first time in unbiased computations it is found that Ni147_{147} is the multilayer (third Mackay) icosahedron. Further, we point to an enhanced ability of {\it fcc} clusters to compete with the icosahedral and decahedral structures in the vicinity of N=79. In addition, it is shown that conversion from the {\it hcp}/anti-Mackay kind of icosahedral growth to the {\it fcc}/Mackay one occurs within a transition layer including several cluster sizes. Moreover, we present and apply different analytical tools in studying structural and energetic properties of such a large class of clusters. These include means for identifying the overall shape, the occurrence of atomic shells, the similarity of the clusters with, e.g., fragments of the {\it fcc} crystal or of a large icosahedral cluster, and a way of analysing whether the NN-atom cluster can be considered constructed from the (N−1)(N-1)-atom one by adding an extra atom. In addition, we compare in detail with results from chemical-probe experiment. Maybe the most central result is that first for clusters with NN above 80 general trends can be identified.Comment: 37 pages, 11 figure

    Theory for the reduction of products of spin operators

    Full text link
    In this study we show that the sum of the powers of arbitrary products of quantum spin operators such as (S+)l(S−)m(Sz)n(S^+)^l(S^-)^m(S^z)^n can be reduced by one unit, if this sum is equal to 2S+1, S being the spin quantum number. We emphasize that by a repeated application of this procedure \em all \em arbitrary spin operator products with a sum of powers larger than 2S can be replaced by a combination of spin operators with a maximum sum of powers not larger than 2S. This transformation is exact. All spin operators must belong to the same lattice site. By use of this procedure the consideration of single-ion anisotropies and the investigation of the magnetic reorientation within a Green's function theory are facilitated. Furthermore, it may be useful for the study of time dependent magnetic properties within the ultrashort (fsec) time domain.Comment: 11 pages, 1 table, uses rotatin

    Hybrid density functional study of small Rh-n (n=2-15) clusters

    Get PDF
    The physical properties of small rhodium clusters, Rh-n, have been in debate due to the shortcomings of density functional theory (DFT). To help in the solution of those problems, we obtained a set of putative lowest energy structures for small Rh-n (n = 2-15) clusters employing hybrid-DFT and the generalized gradient approximation (GGA). For n = 2-6, both hybrid and GGA functionals yield similar ground-state structures (compact), however, hybrid favors compact structures for n = 7-15, while GGA favors open structures based on simple cubic motifs. Thus, experimental results are crucial to indicate the correct ground-state structures, however, we found that a unique set of structures (compact or open) is unable to explain all available experimental data. For example, the GGA structures (open) yield total magnetic moments in excellent agreement with experimental data, while hybrid structures (compact) have larger magnetic moments compared with experiments due to the increased localization of the 4d states. Thus, we would conclude that GGA provides a better description of the Rh-n clusters, however, a recent experimental-theoretical study [ Harding et al., J. Chem. Phys. 133, 214304 (2010)] found that only compact structures are able to explain experimental vibrational data, while open structures cannot. Therefore, it indicates that the study of Rh-n clusters is a challenging problem and further experimental studies are required to help in the solution of this conundrum, as well as a better description of the exchange and correlation effects on the Rh n clusters using theoretical methods such as the quantum Monte Carlo method.SEP-PROMEP, MexicoSEPPROMEP, MexicoCONACyT, Mexico [162651]CONACYT, MexicoMECD [SAB2011-0024]MECDSao Paulo Science Foundation (FAPESP)Sao Paulo Science Foundation (FAPESP)CAPESCAPE

    Ising cubes with enhanced surface couplings

    Full text link
    Using Monte Carlo techniques, Ising cubes with ferromagnetic nearest-neighbor interactions and enhanced couplings between surface spins are studied. In particular, at the surface transition, the corner magnetization shows non-universal, coupling-dependent critical behavior in the thermodynamic limit. Results on the critical exponent of the corner magnetization are compared to previous findings on two-dimensional Ising models with three intersecting defect lines.Comment: 4 pages, 2 figures included, submitted to Phys. Rev.

    Vibrational Properties of Nanoscale Materials: From Nanoparticles to Nanocrystalline Materials

    Full text link
    The vibrational density of states (VDOS) of nanoclusters and nanocrystalline materials are derived from molecular-dynamics simulations using empirical tight-binding potentials. The results show that the VDOS inside nanoclusters can be understood as that of the corresponding bulk system compressed by the capillary pressure. At the surface of the nanoparticles the VDOS exhibits a strong enhancement at low energies and shows structures similar to that found near flat crystalline surfaces. For the nanocrystalline materials an increased VDOS is found at high and low phonon energies, in agreement with experimental findings. The individual VDOS contributions from the grain centers, grain boundaries, and internal surfaces show that, in the nanocrystalline materials, the VDOS enhancements are mainly caused by the grain-boundary contributions and that surface atoms play only a minor role. Although capillary pressures are also present inside the grains of nanocrystalline materials, their effect on the VDOS is different than in the cluster case which is probably due to the inter-grain coupling of the modes via the grain-boundaries.Comment: 10 pages, 7 figures, accepted for publication in Phys. Rev.

    Noncollinear magnetic ordering in small Chromium Clusters

    Get PDF
    We investigate noncollinear effects in antiferromagnetically coupled clusters using the general, rotationally invariant form of local spin-density theory. The coupling to the electronic degrees of freedom is treated with relativistic non-local pseudopotentials and the ionic structure is optimized by Monte-Carlo techniques. We find that small chromium clusters (N \le 13) strongly favor noncollinear configurations of their local magnetic moments due to frustration. This effect is associated with a significantly lower total magnetization of the noncollinear ground states, ameliorating the disagreement between Stern-Gerlach measurements and previous collinear calculations for Cr_{12} and Cr_{13}. Our results further suggest that the trend to noncollinear configurations might be a feature common to most antiferromagnetic clusters.Comment: 9 pages, RevTeX plus .eps/.ps figure
    • 

    corecore