292 research outputs found

    Differential cross sections for muonic atom scattering from hydrogenic molecules

    Get PDF
    The differential cross sections for low-energy muonic hydrogen atom scattering from hydrogenic molecules are directly expressed by the corresponding amplitudes for muonic atom scattering from hydrogen-isotope nuclei. The energy and angular dependence of these three-body amplitudes is thus taken naturally into account in scattering from molecules, without involving any pseudopotentials. Effects of the internal motion of nuclei inside the target molecules are included for every initial rotational-vibrational state. These effects are very significant as the considered three-body amplitudes often vary strongly within the energy interval 0.1\lesssim{}0.1 eV. The differential cross sections, calculated using the presented method, have been successfully used for planning and interpreting many experiments in low-energy muon physics. Studies of μ\mu^{-} nuclear capture in pμp\mu and the measurement of the Lamb shift in pμp\mu atoms created in H2_2 gaseous targets are recent examples.Comment: 21 pages, 13 figures, submitted to Phys. Rev.

    High-Dose Enalapril Treatment Reverses Myocardial Fibrosis in Experimental Uremic Cardiomyopathy

    Get PDF
    AIMS: Patients with renal failure develop cardiovascular alterations which contribute to the higher rate of cardiac death. Blockade of the renin angiotensin system ameliorates the development of such changes. It is unclear, however, to what extent ACE-inhibitors can also reverse existing cardiovascular alterations. Therefore, we investigated the effect of high dose enalapril treatment on these alterations. METHODS: Male Sprague Dawley rats underwent subtotal nephrectomy (SNX, n = 34) or sham operation (sham, n = 39). Eight weeks after surgery, rats were sacrificed or allocated to treatment with either high-dose enalapril, combination of furosemide/dihydralazine or solvent for 4 weeks. Heart and aorta were evaluated using morphometry, stereological techniques and TaqMan PCR. RESULTS: After 8 and 12 weeks systolic blood pressure, albumin excretion, and left ventricular weight were significantly higher in untreated SNX compared to sham. Twelve weeks after SNX a significantly higher volume density of cardiac interstitial tissue (2.57±0.43% in SNX vs 1.50±0.43% in sham, p<0.05) and a significantly lower capillary length density (4532±355 mm/mm(3) in SNX vs 5023±624 mm/mm(3) in sham, p<0.05) were found. Treatment of SNX with enalapril from week 8-12 significantly improved myocardial fibrosis (1.63±0.25%, p<0.05), but not capillary reduction (3908±486 mm/mm(3)) or increased intercapillary distance. In contrast, alternative antihypertensive treatment showed no such effect. Significantly increased media thickness together with decreased vascular smooth muscles cell number and a disarray of elastic fibres were found in the aorta of SNX animals compared to sham. Both antihypertensive treatments failed to cause complete regression of these alterations. CONCLUSIONS: The study indicates that high dose ACE-I treatment causes partial, but not complete, reversal of cardiovascular changes in SNX

    Muon Catalyzed Fusion in 3 K Solid Deuterium

    Full text link
    Muon catalyzed fusion in deuterium has traditionally been studied in gaseous and liquid targets. The TRIUMF solid-hydrogen-layer target system has been used to study the fusion reaction rates in the solid phase of D_2 at a target temperature of 3 K. Products of two distinct branches of the reaction were observed; neutrons by a liquid organic scintillator, and protons by a silicon detector located inside the target system. The effective molecular formation rate from the upper hyperfine state of μd\mu d and the hyperfine transition rate have been measured: λ~(3/2)=2.71(7)stat.(32)syst.μ/s\tilde{\lambda}_(3/2)=2.71(7)_{stat.}(32)_{syst.} \mu/s, and λ~(3/2)(1/2)=34.2(8)stat.(1)syst.μ/s\tilde{\lambda}_{(3/2)(1/2)} =34.2(8)_{stat.}(1)_{syst.} \mu /s. The molecular formation rate is consistent with other recent measurements, but not with the theory for isolated molecules. The discrepancy may be due to incomplete thermalization, an effect which was investigated by Monte Carlo calculations. Information on branching ratio parameters for the s and p wave d+d nuclear interaction has been extracted.Comment: 19 pages, 11 figures, submitted to PRA Feb 20, 199

    Measurement of the Resonant dμtd\mu t Molecular Formation Rate in Solid HD

    Get PDF
    Measurements of muon-catalyzed dt fusion (dμt4He+n+μd\mu t \to ^4He+n+\mu^-) in solid HD have been performed. The theory describing the energy dependent resonant molecular formation rate for the reaction μt\mu t + HD [(dμt)pee]\to [(d\mu t)pee]^* is compared to experimental results in a pure solid HD target. Constraints on the rates are inferred through the use of a Monte Carlo model developed specifically for the experiment. From the time-of- flight analysis of fusion events in 16 and 37 μgcm2\mu g\cdot cm^{-2} targets, an average formation rate consistent with 0.897±\pm(0.046)stat±_{stat}\pm (0.166)syst_{syst} times the theoretical prediction was obtained.Comment: 4 pages, 5 figure

    Resonant Formation of dμtd\mu t Molecules in Deuterium: An Atomic Beam Measurement of Muon Catalyzed dt Fusion

    Full text link
    Resonant formation of dμtd\mu t molecules in collisions of muonic tritium (μt\mu t) on D2_2 was investigated using a beam of μt\mu t atoms, demonstrating a new direct approach in muon catalyzed fusion studies. Strong epithermal resonances in dμtd\mu t formation were directly revealed for the first time. From the time-of-flight analysis of 2036±1162036\pm 116 dtdt fusion events, a formation rate consistent with 0.73±(0.16)meas±(0.09)model0.73\pm (0.16)_{meas} \pm (0.09)_{model} times the theoretical prediction was obtained. For the largest peak at a resonance energy of 0.423±0.0370.423 \pm 0.037 eV, this corresponds to a rate of (7.1±1.8)×109(7.1 \pm 1.8) \times 10^9 s1^{-1}, more than an order of magnitude larger than those at low energies.Comment: To appear in Phys. Rev. Let
    corecore