10,019 research outputs found
New distributed offline processing scheme at Belle
The offline processing of the data collected by the Belle detector has been
recently upgraded to cope with the excellent performance of the KEKB
accelerator. The 127/fb of data (120 TB on tape) collected between autumn 2003
and summer 2004 has been processed in 2 months, thanks to the high speed and
stability of the new, distributed processing scheme. We present here this new
processing scheme and its performance.Comment: 4 pages, 8 figures, uses CHEP2004.cl
Precise measurements of electron and hole g-factors of single quantum dots by using nuclear field
We demonstrated the cancellation of the external magnetic field by the
nuclear field at one edge of the nuclear polarization bistability in single
InAlAs quantum dots. The cancellation for the electron Zeeman splitting gives
the precise value of the hole g-factor. By combining with the exciton g-factor
that is obtained from the Zeeman splitting for linearly polarized excitation,
the magnitude and sign of the electron and hole g-factors in the growth
direction are evaluated.Comment: 3 pages, 2 figure
Analytical treatments of micro-channel and micro-capillary flows
This paper was presented at the 3rd Micro and Nano Flows Conference (MNF2011), which was held at the Makedonia Palace Hotel, Thessaloniki in Greece. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, Aristotle University of Thessaloniki, University of Thessaly, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute.Extensive work in the field of micro-channel and micro-capillary flows using the extended Navier-Stokes equations are carried out in this paper by taking the diffusive mass transport into account and provided the basis for analytical treatments of these flows. The results are compared with experimental results for micro-channels and showed good agreement. It is found that a characteristic pressure is useful to explain the comparisons. In addition, the work on micro-channel flows is extended to micro-capillary flows, to provide analytical treatments of this class of flows. The analytical results show similar behavior to that of micro-channel flows. Comparisons between the analytical results and experimental findings are also presented and discussed by introducing the characteristic pressure
Microscopic modelling of perpendicular electronic transport in doped multiple quantum wells
We present a microscopic calculation of transport in strongly doped
superlattices where domain formation is likely to occur. Our theoretical method
is based on a current formula involving the spectral functions of the system,
and thus allows, in principle, a systematic investigation of various
interaction mechanisms. Taking into account impurity scattering and optical
phonons we obtain a good quantitative agreement with existing experimental data
from Helgesen and Finstad (J. Appl. Phys. 69, 2689, (1991)). Furthermore the
calculated spectral functions indicate a significant increase of the average
intersubband spacing compared to the bare level differences which might explain
the experimental trend.Comment: 10 pages 5 figure
- …