1,908 research outputs found

    Improved detection of small atom numbers through image processing

    Get PDF
    We demonstrate improved detection of small trapped atomic ensembles through advanced post-processing and optimal analysis of absorption images. A fringe removal algorithm reduces imaging noise to the fundamental photon-shot-noise level and proves beneficial even in the absence of fringes. A maximum-likelihood estimator is then derived for optimal atom-number estimation and is applied to real experimental data to measure the population differences and intrinsic atom shot-noise between spatially separated ensembles each comprising between 10 and 2000 atoms. The combined techniques improve our signal-to-noise by a factor of 3, to a minimum resolvable population difference of 17 atoms, close to our ultimate detection limit.Comment: 4 pages, 3 figure

    Asymmetric double-well potential for single atom interferometry

    Full text link
    We consider the evolution of a single-atom wavefunction in a time-dependent double-well interferometer in the presence of a spatially asymmetric potential. We examine a case where a single trapping potential is split into an asymmetric double well and then recombined again. The interferometer involves a measurement of the first excited state population as a sensitive measure of the asymmetric potential. Based on a two-mode approximation a Bloch vector model provides a simple and satisfactory description of the dynamical evolution. We discuss the roles of adiabaticity and asymmetry in the double-well interferometer. The Bloch model allows us to account for the effects of asymmetry on the excited state population throughout the interferometric process and to choose the appropriate splitting, holding and recombination periods in order to maximize the output signal. We also compare the outcomes of the Bloch vector model with the results of numerical simulations of the multi-state time-dependent Schroedinger equation.Comment: 9 pages, 6 figure

    Investigation of effects of background water on upwelled reflectance spectra and techniques for analysis of dilute primary-treated sewage sludge

    Get PDF
    In an effort to improve understanding of the effects of variations in background water on reflectance spectra, laboratory tests were conducted with various concentrations of sewage sludge diluted with several types of background water. The results from these tests indicate that reflectance spectra for sewage-sludge mixtures are dependent upon the reflectance of the background water. Both the ratio of sewage-sludge reflectance to background-water reflectance and the ratio of the difference in reflectance to background-water reflectance show spectral variations for different turbid background waters. The difference in reflectance is the only parameter considered

    Random copying in space

    Full text link
    Random copying is a simple model for population dynamics in the absence of selection, and has been applied to both biological and cultural evolution. In this work, we investigate the effect that spatial structure has on the dynamics. We focus in particular on how a measure of the diversity in the population changes over time. We show that even when the vast majority of a population's history may be well-described by a spatially-unstructured model, spatial structure may nevertheless affect the expected level of diversity seen at a local scale. We demonstrate this phenomenon explicitly by examining the random copying process on small-world networks, and use our results to comment on the use of simple random-copying models in an empirical context.Comment: 26 pages, 11 figures. Based on invited talk at AHRC CECD Conference on "Cultural Evolution in Spatially Structured Populations" at UCL, September 2010. To appear in ACS - Advances in Complex System

    WCRP surface radiation budget shortwave data product description, version 1.1

    Get PDF
    Shortwave radiative fluxes which reach the Earth's surface are key elements that influence both atmospheric and oceanic circulation. The World Climate Research Program has established the Surface Radiation Budget climatology project with the ultimate goal of determining the various components of the surface radiation budget from satellite data on a global scale. This report describes the first global product that is being produced and archived as part of that effort. The interested user can obtain the monthly global data sets free of charge using e-mail procedures

    Short communication: relationship between body growth and mammary development in dairy heifers

    Get PDF
    Our objective was to determine if prepubertal rate of body weight (BW) gain, independent of diet, was related to mammary development of dairy heifers. Data from two studies recently conducted at Michigan State University were used to identify factors, within a dietary treatment group, that would account for variation in first lactation milk production or amount of mammary parenchymal DNA at the time of puberty. Factors analyzed for variation in milk production during first lactation were: postpartum BW, prepubertal BW gain, gestational BW gain, postpartum BW gain, body condition score (BCS) at breeding, and BCS at calving. Factors analyzed for variation in mammary parenchymal DNA at puberty were: BW at slaughter, age at puberty, prepubertal BW gain and body protein and body fat content at slaughter. For both analyses, prepubertal BW gain did not account for any of the variation in mammary development. The only significant covariate for the milk production model (r2 = 0.44) was BCS at breeding. Similarly, the only significant covariate in the parenchymal DNA model (r2 = 0.22) was body fat content at slaughter. These results suggest that, within a dietary treatment, heifers that grow faster do not have impaired mammary development, and increased body fatness may be a better predictor of impaired mammary development than BW gain

    Short communication: relationship between body growth and mammary development in dairy heifers

    Get PDF
    Our objective was to determine if prepubertal rate of body weight (BW) gain, independent of diet, was related to mammary development of dairy heifers. Data from two studies recently conducted at Michigan State University were used to identify factors, within a dietary treatment group, that would account for variation in first lactation milk production or amount of mammary parenchymal DNA at the time of puberty. Factors analyzed for variation in milk production during first lactation were: postpartum BW, prepubertal BW gain, gestational BW gain, postpartum BW gain, body condition score (BCS) at breeding, and BCS at calving. Factors analyzed for variation in mammary parenchymal DNA at puberty were: BW at slaughter, age at puberty, prepubertal BW gain and body protein and body fat content at slaughter. For both analyses, prepubertal BW gain did not account for any of the variation in mammary development. The only significant covariate for the milk production model (r2 = 0.44) was BCS at breeding. Similarly, the only significant covariate in the parenchymal DNA model (r2 = 0.22) was body fat content at slaughter. These results suggest that, within a dietary treatment, heifers that grow faster do not have impaired mammary development, and increased body fatness may be a better predictor of impaired mammary development than BW gain

    Ordering in voter models on networks: Exact reduction to a single-coordinate diffusion

    Full text link
    We study the voter model and related random-copying processes on arbitrarily complex network structures. Through a representation of the dynamics as a particle reaction process, we show that a quantity measuring the degree of order in a finite system is, under certain conditions, exactly governed by a universal diffusion equation. Whenever this reduction occurs, the details of the network structure and random-copying process affect only a single parameter in the diffusion equation. The validity of the reduction can be established with considerably less information than one might expect: it suffices to know just two characteristic timescales within the dynamics of a single pair of reacting particles. We develop methods to identify these timescales, and apply them to deterministic and random network structures. We focus in particular on how the ordering time is affected by degree correlations, since such effects are hard to access by existing theoretical approaches.Comment: 37 pages, 10 figures. Revised version with additional discussion and simulation results to appear in J Phys

    Diffusion Monte Carlo study of two-dimensional liquid 4^4He

    Full text link
    The ground-state properties of two-dimensional liquid 4^4He at zero temperature are studied by means of a quadratic diffusion Monte Carlo method. As interatomic potential we use a revised version of the HFDHE2 Aziz potential which is expected to give a better description of the interaction between helium atoms. The equation of state is determined with great accuracy over a wide range of densities in the liquid phase from the spinodal point up to the freezing density. The spinodal decomposition density is estimated and other properties of the liquid, such as radial distribution function, static form factor, momentum distribution and density dependence of the condensate fraction are all presented.Comment: 19 pages, RevTex 3.0, 7 figures available upon reques

    Monte Carlo Analysis of a New Interatomic Potential for He

    Full text link
    By means of a Quadratic Diffusion Monte Carlo method we have performed a comparative analysis between the Aziz potential and a revised version of it. The results demonstrate that the new potential produces a better description of the equation of state for liquid 4^4He. In spite of the improvement in the description of derivative magnitudes of the energy, as the pressure or the compressibility, the energy per particle which comes from this new potential is lower than the experimental one. The inclusion of three-body interactions, which give a repulsive contribution to the potential energy, makes it feasible that the calculated energy comes close to the experimental result.Comment: 36 pages, LaTex, 11 PostScript figures include
    corecore