22,548 research outputs found
Crossover Between Weakly and Strongly Self-avoiding Random Surfaces
We investigate the crossover between weak and strong self-avoidance in a
simulation of random surfaces with extrinsic curvature. We consider both
dynamically triangulated and rigid surfaces with the two possible
discretizations of the extrinsic curvature term.Comment: 5 page
Identifying a forward scattering superconductor through pump-probe spectroscopy
Electron-boson scattering that is peaked in the forward direction has been
suggested as an essential ingredient for enhanced superconductivity observed in
FeSe monolayers. Here, we study the superconducting state of a system dominated
by forward scattering in the time-domain and contrast its behavior against the
standard isotropic BCS case for both s- and d-wave symmetries. An analysis of
the electron's dynamics in the pump-driven non-equilibrium state reveals that
the superconducting order in the forward-focused case is robust and persistent
against the pump-induced perturbations. The superconducting order parameter
also exhibits a non-uniform melting in momentum space. We show that this
behavior is in sharp contrast to the isotropic interaction case and propose
that time-resolved approaches are a potentially powerful tool to differentiate
the nature of the dominant coupling in correlated materials.Comment: Updated the introduction and the methods section, 6 Pages, 5 figure
Synchronized voltage contrast display analysis system
An apparatus and method for comparing internal voltage potentials of first and second operating electronic components such as large scale integrated circuits (LSI's) in which voltage differentials are visually identified via an appropriate display means are described. More particularly, in a first embodiment of the invention a first and second scanning electron microscope (SEM) are configured to scan a first and second operating electronic component respectively. The scan pattern of the second SEM is synchronized to that of the first SEM so that both simultaneously scan corresponding portions of the two operating electronic components. Video signals from each SEM corresponding to secondary electron signals generated as a result of a primary electron beam intersecting each operating electronic component in accordance with a predetermined scan pattern are provided to a video mixer and color encoder
Origin of the transient unpulsed radio emission from the PSR B1259-63 binary system
We discuss the interpretation of transient, unpulsed radio emission detected
from the unique pulsar/Be-star binary system PSR B1259-63. Extensive monitoring
of the 1994 and 1997 periastron passages has shown that the source flares over
a 100-day interval around periastron, varying on time-scales as short as a day
and peaking at 60 mJy (~100 times the apastron flux density) at 1.4 GHz.
Interpreting the emission as synchrotron radiation, we show that (i) the
observed variations in flux density are too large to be caused by the shock
interaction between the pulsar wind and an isotropic, radiatively driven,
Be-star wind, and (ii) the radio emitting electrons do not originate from the
pulsar wind. We argue instead that the radio electrons originate from the
circumstellar disk of the Be star and are accelerated at two epochs, one before
and one after periastron, when the pulsar passes through the disk. A simple
model incorporating two epochs of impulsive acceleration followed by
synchrotron cooling reproduces the essential features of the radio light curve
and spectrum and is consistent with the system geometry inferred from pulsed
radio data.Comment: To be published in Astrophysical Journal Letters 7 pages, 1
postscript figur
Spin dynamics in hole-doped two-dimensional S=1/2 Heisenberg antiferromagnets: ^{63}Cu NQR relaxation in La_{2-x}Sr_xCuO_4 for
The effects on the correlated Cu^{2+} S = 1/2 spin dynamics in the
paramagnetic phase of La_{2-x}Sr_xCuO_4 (for ) due to the
injection of holes are studied by means of ^{63}Cu NQR spin-lattice relaxation
time T_1 measurements. The results are discussed in the framework of the
connection between T_1 and the in-plane magnetic correlation length
. It is found that at high temperatures the system remains in
the renormalized classical regime, with a spin stiffness constant
reduced by small doping to an extent larger than the one due to Zn doping. For
the effect of doping on appears to level off. The
values for derived from T_1 for K are much larger
than the ones estimated from the temperature behavior of sublattice
magnetization in the ordered phase (). It is argued that these
features are consistent with the hypothesis of formation of stripes of
microsegregated holes.Comment: 10 pages, 3 figure
A tractable genotype-phenotype map for the self-assembly of protein quaternary structure
The mapping between biological genotypes and phenotypes is central to the
study of biological evolution. Here we introduce a rich, intuitive, and
biologically realistic genotype-phenotype (GP) map, that serves as a model of
self-assembling biological structures, such as protein complexes, and remains
computationally and analytically tractable. Our GP map arises naturally from
the self-assembly of polyomino structures on a 2D lattice and exhibits a number
of properties: (genotypes vastly outnumber phenotypes),
(genotypic redundancy varies greatly between
phenotypes), (phenotypes consist
of disconnected mutational networks) and (most
phenotypes can be reached in a small number of mutations). We also show that
the mutational robustness of phenotypes scales very roughly logarithmically
with phenotype redundancy and is positively correlated with phenotypic
evolvability. Although our GP map describes the assembly of disconnected
objects, it shares many properties with other popular GP maps for connected
units, such as models for RNA secondary structure or the HP lattice model for
protein tertiary structure. The remarkable fact that these important properties
similarly emerge from such different models suggests the possibility that
universal features underlie a much wider class of biologically realistic GP
maps.Comment: 12 pages, 6 figure
- …