1,478 research outputs found

    The plaquette phase of the square lattice quantum dimer model

    Full text link
    The plaquette phase of the square lattice quantum dimer model is studied using a continuous-time reptation quantum Monte Carlo method for lattices of sizes up to 48x48 sites. We determine the location of the phase transition between the columnar and plaquette phases to occur at V_c/J=0.60 +- 0.05 which is significantly larger than inferred from previous exact diagonalization studies on smaller lattices. Offdiagonal correlation functions are obtained. They exhibit long-range order in the plaquette phase but not at the Rokhsar-Kivelson point. We also observe significant finite-size corrections to scaling for the transition between the plaquette phase and the critical resonating valence bond liquid. This study demonstrates the importance of understanding finite-size effects when considering critical properties of the square lattice quantum dimer model.Comment: 10 pages, 18 figures, considerably revised versio

    Spin of ground state baryons

    Full text link
    We calculate the quark spin contribution to the total angular momentum of flavor octet and flavor decuplet ground state baryons using a spin-flavor symmetry based parametrization method of quantum chromodynamics. We find that third order SU(6) symmetry breaking three-quark operators are necessary to explain the experimental result Sigma_1=0.32(10). For spin 3/2 decuplet baryons we predict that the quark spin contribution is Sigma_3=3.93(22), i.e. considerably larger than their total angular momentum.Comment: 8 page

    Stability of a hard-sphere binary quasicrystal

    Full text link
    The stability of a quasicrystalline structure, recently obtained in a molecular-dynamics simulation of rapid cooling of a binary melt, is analyzed for binary hard-sphere mixtures within a density-functional approach. It is found that this quasicrystal is metastable relative to crystalline and fluid phases for diameter ratios above 0.83. Such trend is partially reversed for lower diameter ratios, since the quasicrystal becomes stable with respect to the crystal but does not reach a coexistence with the fluid.Comment: 14 pages, 6 eps figures included. Revised version to appear in Phil. Mag.

    Semiclassical ordering in the large-N pyrochlore antiferromagnet

    Full text link
    We study the semiclassical limit of the Sp(N)Sp(N) generalization of the pyrochlore lattice Heisenberg antiferromagnet by expanding about the NN \to \infty saddlepoint in powers of a generalized inverse spin. To leading order, we write down an effective Hamiltonian as a series in loops on the lattice. Using this as a formula for calculating the energy of any classical ground state, we perform Monte-Carlo simulations and find a unique collinear ground state. This state is not a ground state of linear spin-wave theory, and can therefore not be a physical (N=1) semiclassical ground state.Comment: 4 pages, 4 eps figures; published versio

    The Nucleon-Mass Difference in Chiral Perturbation Theory and Nuclear Forces

    Get PDF
    A new method is developed for treating the effect of the neutron-proton mass difference in isospin-violating nuclear forces. Previous treatments utilized an awkward subtraction scheme to generate these forces. A field redefinition is used to remove that mass difference from the Lagrangian (and hence from asymptotic nucleon states) and replace its effect by effective interactions. Previous calculations of static Class II charge-independence-breaking and Class III charge-symmetry-breaking potentials are verified using the new scheme, which is also used to calculate Class IV nuclear forces. Two-body forces of the latter type are found to be identical to previously obtained results. A novel three-body force is also found. Problems involving Galilean invariance with Class IV one-pion-exchange forces are identified and resolved.Comment: 20 pages, 2 figures, latex - submitted to Physical Review

    Predicting Transmission Suitability of Mosquito-Borne Diseases under Climate Change to Underpin Decision Making

    Get PDF
    The risk of the mosquito-borne diseases malaria, dengue fever and Zika virus is expected to shift both temporally and spatially under climate change. As climate change projections continue to improve, our ability to predict these shifts is also enhanced. This paper predicts transmission suitability for these mosquito-borne diseases, which are three of the most significant, using the most up-to-date climate change projections. Using a mechanistic methodology, areas that are newly suitable and those where people are most at risk of transmission under the best- and worst-case climate change scenarios have been identified. The results show that although transmission suitability is expected to decrease overall for malaria, some areas will become newly suitable, putting naïve populations at risk. In contrast, transmission suitability for dengue fever and Zika virus is expected to increase both in duration and geographical extent. Although transmission suitability is expected to increase in temperate zones for a few months of the year, suitability remains focused in the tropics. The highest transmission suitability in tropical regions is likely to exacerbate the intense existing vulnerability of these populations, especially children, to the multiple consequences of climate change, and their severe lack of resources and agency to cope with these impacts and pressures. As these changes in transmission suitability are amplified under the worst-case climate change scenario, this paper makes the case in support of enhanced and more urgent efforts to mitigate climate change than has been achieved to date. By presenting consistent data on the climate-driven spread of multiple mosquito-borne diseases, our work provides more holistic information to underpin prevention and control planning and decision making at national and regional levels

    Power-law spin correlations in pyrochlore antiferromagnets

    Full text link
    The ground state ensemble of the highly frustrated pyrochlore-lattice antiferromagnet can be mapped to a coarse-grained ``polarization'' field satisfying a zero-divergence condition From this it follows that the correlations of this field, as well as the actual spin correlations, decay with separation like a dipole-dipole interaction (1/R31/|R|^3). Furthermore, a lattice version of the derivation gives an approximate formula for spin correlations, with several features that agree well with simulations and neutron-diffraction measurements of diffuse scattering, in particular the pinch-point (pseudo-dipolar) singularities at reciprocal lattice vectors. This system is compared to others in which constraints also imply diffraction singularities, and other possible applications of the coarse-grained polarization are discussed.Comment: 13 pp, revtex, two figure

    Ab initio Ti-Zr-Ni phase diagram predicts stability of icosahedral TiZrNi quasicrystals

    Get PDF
    The ab initio phase diagram determines the energetic stability of the icosahedral TiZrNi quasicrystal. The complete ab initio zero-temperature ternary phase diagram is constructed from the calculated energies of the elemental, binary and ternary Ti-Zr-Ni phases. For this, the icosahedral i-TiZrNi quasicrystal is approximated by periodic structures of up to 123 atoms/unit cell, based on a decorated-tiling model [R. G. Hennig, K. F. Kelton, A. E. Carlsson, and C. L. Henley, Phys. Rev. B 67, 134202 (2003)]. The approximant structures containing the 45-atom Bergman cluster are nearly degenerate in energy, and are all energetically stable against the competing phases. It is concluded that i-TiZrNi is a ground-state quasicrystal, as it is experimentally the low-temperature phase for its composition

    Phason elasticity of a three-dimensional quasicrystal: transfer-matrix method

    Full text link
    We introduce a new transfer matrix method for calculating the thermodynamic properties of random-tiling models of quasicrystals in any number of dimensions, and describe how it may be used to calculate the phason elastic properties of these models, which are related to experimental measurables such as phason Debye-Waller factors, and diffuse scattering wings near Bragg peaks. We apply our method to the canonical-cell model of the icosahedral phase, making use of results from a previously-presented calculation in which the possible structures for this model under specific periodic boundary conditions were cataloged using a computational technique. We give results for the configurational entropy density and the two fundamental elastic constants for a range of system sizes. The method is general enough allow a similar calculation to be performed for any other random tiling model.Comment: 38 pages, 3 PostScript figures, self-expanding uuencoded compressed tar file, LaTeX using RevTeX macros and epsfig.st
    corecore