361 research outputs found

    Quenched Averages for self-avoiding walks and polygons on deterministic fractals

    Full text link
    We study rooted self avoiding polygons and self avoiding walks on deterministic fractal lattices of finite ramification index. Different sites on such lattices are not equivalent, and the number of rooted open walks W_n(S), and rooted self-avoiding polygons P_n(S) of n steps depend on the root S. We use exact recursion equations on the fractal to determine the generating functions for P_n(S), and W_n(S) for an arbitrary point S on the lattice. These are used to compute the averages ,,, , and <logWn(S)><log W_n(S)> over different positions of S. We find that the connectivity constant μ\mu, and the radius of gyration exponent ν\nu are the same for the annealed and quenched averages. However,  nlogμ+(αq−2)logn ~ n log \mu + (\alpha_q -2) log n, and  nlogμ+(γq−1)logn ~ n log \mu + (\gamma_q -1)log n, where the exponents αq\alpha_q and γq\gamma_q take values different from the annealed case. These are expressed as the Lyapunov exponents of random product of finite-dimensional matrices. For the 3-simplex lattice, our numerical estimation gives αq≃0.72837±0.00001 \alpha_q \simeq 0.72837 \pm 0.00001; and γq≃1.37501±0.00003\gamma_q \simeq 1.37501 \pm 0.00003, to be compared with the annealed values αa=0.73421\alpha_a = 0.73421 and γa=1.37522\gamma_a = 1.37522.Comment: 17 pages, 10 figures, submitted to Journal of Statistical Physic

    Log-periodic route to fractal functions

    Full text link
    Log-periodic oscillations have been found to decorate the usual power law behavior found to describe the approach to a critical point, when the continuous scale-invariance symmetry is partially broken into a discrete-scale invariance (DSI) symmetry. We classify the `Weierstrass-type'' solutions of the renormalization group equation F(x)= g(x)+(1/m)F(g x) into two classes characterized by the amplitudes A(n) of the power law series expansion. These two classes are separated by a novel ``critical'' point. Growth processes (DLA), rupture, earthquake and financial crashes seem to be characterized by oscillatory or bounded regular microscopic functions g(x) that lead to a slow power law decay of A(n), giving strong log-periodic amplitudes. In contrast, the regular function g(x) of statistical physics models with ``ferromagnetic''-type interactions at equibrium involves unbound logarithms of polynomials of the control variable that lead to a fast exponential decay of A(n) giving weak log-periodic amplitudes and smoothed observables. These two classes of behavior can be traced back to the existence or abscence of ``antiferromagnetic'' or ``dipolar''-type interactions which, when present, make the Green functions non-monotonous oscillatory and favor spatial modulated patterns.Comment: Latex document of 29 pages + 20 ps figures, addition of a new demonstration of the source of strong log-periodicity and of a justification of the general offered classification, update of reference lis

    Critical Indices as Limits of Control Functions

    Full text link
    A variant of self-similar approximation theory is suggested, permitting an easy and accurate summation of divergent series consisting of only a few terms. The method is based on a power-law algebraic transformation, whose powers play the role of control functions governing the fastest convergence of the renormalized series. A striking relation between the theory of critical phenomena and optimal control theory is discovered: The critical indices are found to be directly related to limits of control functions at critical points. The method is applied to calculating the critical indices for several difficult problems. The results are in very good agreement with accurate numerical data.Comment: 1 file, 5 pages, RevTe

    Multifractality in Time Series

    Full text link
    We apply the concepts of multifractal physics to financial time series in order to characterize the onset of crash for the Standard & Poor's 500 stock index x(t). It is found that within the framework of multifractality, the "analogous" specific heat of the S&P500 discrete price index displays a shoulder to the right of the main peak for low values of time lags. On decreasing T, the presence of the shoulder is a consequence of the peaked, temporal x(t+T)-x(t) fluctuations in this regime. For large time lags (T>80), we have found that C_{q} displays typical features of a classical phase transition at a critical point. An example of such dynamic phase transition in a simple economic model system, based on a mapping with multifractality phenomena in random multiplicative processes, is also presented by applying former results obtained with a continuous probability theory for describing scaling measures.Comment: 22 pages, Revtex, 4 ps figures - To appear J. Phys. A (2000

    Self-Similar Interpolation in Quantum Mechanics

    Full text link
    An approach is developed for constructing simple analytical formulae accurately approximating solutions to eigenvalue problems of quantum mechanics. This approach is based on self-similar approximation theory. In order to derive interpolation formulae valid in the whole range of parameters of considered physical quantities, the self-similar renormalization procedure is complimented here by boundary conditions which define control functions guaranteeing correct asymptotic behaviour in the vicinity of boundary points. To emphasize the generality of the approach, it is illustrated by different problems that are typical for quantum mechanics, such as anharmonic oscillators, double-well potentials, and quasiresonance models with quasistationary states. In addition, the nonlinear Schr\"odinger equation is considered, for which both eigenvalues and wave functions are constructed.Comment: 1 file, 30 pages, RevTex, no figure

    Critical properties of 1-D spin 1/2 antiferromagnetic Heisenberg model

    Full text link
    We discuss numerical results for the 1-D spin 1/2 antiferromagnetic Heisenberg model with next-to-nearest neighbour coupling and in the presence of an uniform magnetic field. The model develops zero frequency excitations at field dependent soft mode momenta. We compute critical quantities from finite size dependence of static structure factors.Comment: talk given by H. Kr{\"o}ger at Heraeus Seminar Theory of Spin Lattices and Lattice Gauge Models, Bad Honnef (1996), 20 pages, LaTeX + 18 figures, P

    Chern-Simons Theory for Magnetization Plateaus of Frustrated J1J_1-J2J_2 Heisenberg model

    Full text link
    The magnetization curve of the two-dimensional spin-1/2 J1J_1-J2J_2 Heisenberg model is investigated by using the Chern-Simons theory under a uniform mean-field approximation. We find that the magnetization curve is monotonically increasing for J2/J1<0.267949J_2/J_1 < 0.267949, where the system under zero external field is in the antiferromagnetic N\'eel phase. For larger ratios of J2/J1J_2/J_1, various plateaus will appear in the magnetization curve. In particular, in the disordered phase, our result supports the existence of the M/Msat=1/2M/M_{\rm sat}=1/2 plateau and predicts a new plateau at M/Msat=1/3M/M_{\rm sat}=1/3. By identifying the onset ratio J2/J1J_2/J_1 for the appearance of the 1/2-plateau with the boundary between the N\'eel and the spin-disordered phases in zero field, we can determine this phase boundary accurately by this mean-field calculation. Verification of these interesting results would indicate a strong connection between the frustrated antiferromagnetic system and the quantum Hall system.Comment: RevTeX 4, 4 pages, 3 EPS figure

    Self-Similar Bootstrap of Divergent Series

    Full text link
    A method is developed for calculating effective sums of divergent series. This approach is a variant of the self-similar approximation theory. The novelty here is in using an algebraic transformation with a power providing the maximal stability of the self-similar renormalization procedure. The latter is to be repeated as many times as it is necessary in order to convert into closed self-similar expressions all sums from the series considered. This multiple and complete renormalization is called self-similar bootstrap. The method is illustrated by several examples from statistical physics.Comment: 1 file, 22 pages, RevTe

    Quantum magnetism in two dimensions: From semi-classical N\'eel order to magnetic disorder

    Full text link
    This is a review of ground-state features of the s=1/2 Heisenberg antiferromagnet on two-dimensional lattices. A central issue is the interplay of lattice topology (e.g. coordination number, non-equivalent nearest-neighbor bonds, geometric frustration) and quantum fluctuations and their impact on possible long-range order. This article presents a unified summary of all 11 two-dimensional uniform Archimedean lattices which include e.g. the square, triangular and kagome lattice. We find that the ground state of the spin-1/2 Heisenberg antiferromagnet is likely to be semi-classically ordered in most cases. However, the interplay of geometric frustration and quantum fluctuations gives rise to a quantum paramagnetic ground state without semi-classical long-range order on two lattices which are precisely those among the 11 uniform Archimedean lattices with a highly degenerate ground state in the classical limit. The first one is the famous kagome lattice where many low-lying singlet excitations are known to arise in the spin gap. The second lattice is called star lattice and has a clear gap to all excitations. Modification of certain bonds leads to quantum phase transitions which are also discussed briefly. Furthermore, we discuss the magnetization process of the Heisenberg antiferromagnet on the 11 Archimedean lattices, focusing on anomalies like plateaus and a magnetization jump just below the saturation field. As an illustration we discuss the two-dimensional Shastry-Sutherland model which is used to describe SrCu2(BO3)2.Comment: This is now the complete 72-page preprint version of the 2004 review article. This version corrects two further typographic errors (three total with respect to the published version), see page 2 for detail

    Subjective health legacy of the Chornobyl accident: a comparative study of 19-year olds in Kyiv

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since the Chornobyl accident in 1986, the physical health of exposed children in Ukraine has been monitored, but their perceived health has not been studied. This study examines health perceptions of Ukrainian adolescents exposed to radioactive fallout <it>in utero </it>or as infants, and the epidemiologic and Chornobyl-related influences on self-reported health.</p> <p>Method</p> <p>We assessed three groups of 19-year olds in Kyiv: 262 evacuees from contaminated areas near the plant; 261 classmate controls; and 325 population-based controls. The evacuees and classmates were previously assessed at age 11. Structured interviews were conducted with the adolescents and their mothers (N = 766), followed by general physical examinations (N = 722) and blood tests (N = 707). Proportional odds logistic regression and multi-group path analysis were the major statistical tests.</p> <p>Results</p> <p>The examination and blood test results were similar across groups except for a significantly elevated rate of thyroid enlargement found by palpation in evacuees (17.8%) compared former classmates (8.7%) and population-based controls (8.0%). In addition, four evacuees and one population control had had a thyroidectomy. Compared to controls, the evacuees rated their health the least positively and reported more medically diagnosed illnesses during the 5 years preceding the interview, particularly thyroid disease, migraine headache, and vascular dystony. The consistent risk factors (p < 0.001) for these subjective health reports were evacuee status, female gender, multiple hospitalizations, and health risk perception regarding Chornobyl. All three groups of mothers rated their children's health more negatively than the adolescents themselves, and maternal ratings were uniquely associated with the adolescents' health reports in the adjusted models. In the longitudinal evacuee and classmate subsamples, path analysis showed that mothers' health ratings when the children were age 11 predicted their later evaluations which in turn were associated with the adolescent self-reports.</p> <p>Conclusion</p> <p>The more negative self-evaluations of the evacuees were linked to a number of risk factors, including multiple hospitalizations, health risk perceptions, and epidemiologic risk factors. The increased rate of thyroid cancer and other diagnoses no doubt contributed to the evacuees' less positive subjective health. The strong effect of the mothers' perceptions argues in favor of developing risk communication programs for families rather than for mothers or adolescents as separate target groups.</p
    • …
    corecore