21,447 research outputs found

    Suppression of Dephasing of Optically Trapped Atoms

    Full text link
    Ultra-cold atoms trapped in an optical dipole trap and prepared in a coherent superposition of their hyperfine ground states, decohere as they interact with their environment. We demonstrate than the loss in coherence in an "echo" experiment, which is caused by mechanisms such as Rayleigh scattering, can be suppressed by the use of a new pulse sequence. We also show that the coherence time is then limited by mixing to other vibrational levels in the trap and by the finite lifetime of the internal quantum states of the atoms

    Fibronectin Contributes To Notochord Intercalation In The Invertebrate Chordate, Ciona Intestinalis

    Get PDF
    Background: Genomic analysis has upended chordate phylogeny, placing the tunicates as the sister group to the vertebrates. This taxonomic rearrangement raises questions about the emergence of a tunicate/vertebrate ancestor. Results: Characterization of developmental genes uniquely shared by tunicates and vertebrates is one promising approach for deciphering developmental shifts underlying acquisition of novel, ancestral traits. The matrix glycoprotein Fibronectin (FN) has long been considered a vertebrate-specific gene, playing a major instructive role in vertebrate embryonic development. However, the recent computational prediction of an orthologous “vertebrate-like” Fn gene in the genome of a tunicate, Ciona savignyi, challenges this viewpoint suggesting that Fn may have arisen in the shared tunicate/vertebrate ancestor. Here we verify the presence of a tunicate Fn ortholog. Transgenic reporter analysis was used to characterize a Ciona Fn enhancer driving expression in the notochord. Targeted knockdown in the notochord lineage indicates that FN is required for proper convergent extension. Conclusions: These findings suggest that acquisition of Fn was associated with altered notochord morphogenesis in the vertebrate/tunicate ancestor

    Intrinsic Gating Properties of a Cloned G Protein-activated Inward Rectifier K^+ Channel

    Get PDF
    The voltage-, time-, and K^+-dependent properties of a G protein-activated inwardly rectifying K^+ channel (GIRK1/KGA/Kir3.1) cloned from rat atrium were studied in Xenopus oocytes under two-electrode voltage clamp. During maintained G protein activation and in the presence of high external K^+ (V_K = 0 mV), voltage jumps from V_K to negative membrane potentials activated inward GIRK1 K^+ currents with three distinct time-resolved current components. GIRK1 current activation consisted of an instantaneous component that was followed by two components with time constants T_f~50 ms and T_s~400 ms. These activation time constants were weakly voltage dependent, increasing approximately twofold with maximal hyperpolarization from V_K. Voltage-dependent GIRK1 availability, revealed by tail currents at -80 mV after long prepulses, was greatest at potentials negative to V_K and declined to a plateau of approximately half the maximal level at positive voltages. Voltage-dependent GIRK1 availability shifted with V_K and was half maximal at V_K -20 mV; the equivalent gating charge was ~1.6 e^-. The voltage-dependent gating parameters of GIRK1 did not significantly differ for G protein activation by three heterologously expressed signaling pathways: m2 muscarinic receptors, serotonin 1A receptors, or G protein β1y2 subunits. Voltage dependence was also unaffected by agonist concentration. These results indicate that the voltage-dependent gating properties of GIRK1 are not due to extrinsic factors such as agonist-receptor interactions and G protein-channel coupling, but instead are analogous to the intrinsic gating behaviors of other inwardly rectifying K^+ channels

    Clash of symmetries on the brane

    Get PDF
    If our 3+1-dimensional universe is a brane or domain wall embedded in a higher dimensional space, then a phenomenon we term the ``clash of symmetries'' provides a new method of breaking some continuous symmetries. A global GctsGdiscreteG_{\text{cts}} \otimes G_{\text{discrete}} symmetry is spontaneously broken to HctsHdiscreteH_{\text{cts}} \otimes H_{\text{discrete}}, where the continuous subgroup HctsH_{\text{cts}} can be embedded in several different ways in the parent group GctsG_{\text{cts}}, and Hdiscrete<GdiscreteH_{\text{discrete}} < G_{\text{discrete}}. A certain class of topological domain wall solutions connect two vacua that are invariant under {\it differently embedded} HctsH_{\text{cts}} subgroups. There is then enhanced symmetry breakdown to the intersection of these two subgroups on the domain wall. This is the ``clash''. In the brane limit, we obtain a configuration with HctsH_{\text{cts}} symmetries in the bulk but the smaller intersection symmetry on the brane itself. We illustrate this idea using a permutation symmetric three-Higgs-triplet toy model exploiting the distinct II-, UU- and VV-spin U(2) subgroups of U(3). The three disconnected portions of the vacuum manifold can be treated symmetrically through the construction of a three-fold planar domain wall junction configuration, with our universe at the nexus. A possible connection with E6E_6 is discussed.Comment: 30 pages, 9 embedded figure

    On rigidly rotating perfect fluid cylinders

    Full text link
    The gravitational field of a rigidly rotating perfect fluid cylinder with gamma- law equation of state is found analytically. The solution has two parameters and is physically realistic for gamma in the interval (1.41,2]. Closed timelike curves always appear at large distances.Comment: 10 pages, Revtex (galley

    Relation of population size to marine growth and time of spawning migration in the pink salmon (Oncorhynchus gorbuscha) of southeastern Alaska

    Get PDF
    In studying the relation of an animal population to its environment it must always be remembered that the population forms part of its own environment. This is due mainly to the influence its size has upon the other elements, both physico-chemical and biotic, of the environment. Allee ( 1931) in his discussion of the harmful effects of crowding upon growth separates the growth retarding factors into two groups namely, the vague and the definite...

    Expression of an atrial G-protein-activated potassium channel in Xenopus oocytes

    Get PDF
    Injection of rat atrial RNA into Xenopus oocytes resulted in the expression of a guanine nucleotide binding (G) protein-activated K+ channel. Current through the channel could be activated by acetylcholine or, if RNA encoding a neuronal 5HT1A receptor was coinjected with atrial RNA, by serotonin (5HT). A 5HT-evoked current (I5HT) was observed in oocytes injected with ventricle RNA fractions (of 2.5-5.5 kb) and 5HT1A receptor RNA. I5HT displayed strong inward rectification with very little conductance above the K+ equilibrium potential, was highly selective for K+ over Na+, and was blocked by 5-300 µM Ba2+. I5HT was suppressed by intracellular injection of the nonhydrolyzable analog of GDP, guanosine 5'-[ß-thio]diphosphate, but not by treatment with pertussis toxin (PTX), suggesting coupling of the receptor to the G-protein-activated K+ channel via a PTX-insensitive G protein, possibly endogenously present in the oocyte. Coexpression of the subunit of a PTX-sensitive G protein, Gi2, rendered I5HT sensitive to PTX inhibition. Native oocytes displayed a constitutively active inwardly rectifying K+ current with a lower sensitivity to Ba2+ block; expression of a similar current was also directed by atrial or ventricle RNA of 1.5-3 kb. Xenopus oocytes may be employed for cloning of the G-protein-activated K+ channel cDNA and for studying the coupling between this channel and G proteins
    corecore