1,710 research outputs found

    Suitable classification of mortars from ancient roman and renaissance frescoes using thermal analysis and chemometrics

    Get PDF
    Background Literature on mortars has mainly focused on the identification and characterization of their components in order to assign them to a specific historical period, after accurate classification. For this purpose, different analytical techniques have been proposed. Aim of the present study was to verify whether the combination of thermal analysis and chemometric methods could be used to obtain a fast but correct classification of ancient mortar samples of different ages (Roman era and Renaissance). Results Ancient Roman frescoes from Museo Nazionale Romano (Terme di Diocleziano, Rome, Italy) and Renaissance frescoes from Sistine Chapel and Old Vatican Rooms (Vatican City) were analyzed by thermogravimetry (TG) and differential thermal analysis (DTA). Principal Component analysis (PCA) on the main thermal data evidenced the presence of two clusters, ascribable to the two different ages. Inspection of the loadings allowed to interpret the observed differences in terms of the experimental variables. Conclusions PCA allowed differentiating the two kinds of mortars (Roman and Renaissance frescoes), and evidenced how the ancient Roman samples are richer in binder (calcium carbonate) and contain less filler (aggregate) than the Renaissance ones. It was also demonstrated how the coupling of thermoanalytical techniques and chemometric processing proves to be particularly advantageous when a rapid and correct differentiation and classification of cultural heritage samples of various kinds or ages has to be carried out

    Semantic Wide and Deep Learning for Detecting Crisis-Information Categories on Social Media

    Get PDF
    When crises hit, many flog to social media to share or consume information related to the event. Social media posts during crises tend to provide valuable reports on affected people, donation offers, help requests, advice provision, etc. Automatically identifying the category of information (e.g., reports on affected individuals, donations and volunteers) contained in these posts is vital for their efficient handling and consumption by effected communities and concerned organisations. In this paper, we introduce Sem-CNN; a wide and deep Convolutional Neural Network (CNN) model designed for identifying the category of information contained in crisis-related social media content. Unlike previous models, which mainly rely on the lexical representations of words in the text, the proposed model integrates an additional layer of semantics that represents the named entities in the text, into a wide and deep CNN network. Results show that the Sem-CNN model consistently outperforms the baselines which consist of statistical and non-semantic deep learning models

    Toward a New Normal: Trauma, Diversity, and the New Orleans Urban Long-Term Research Area Exploratory (ULTRA-Ex) Project

    Get PDF
    Though it is widely held that social-ecological diversity is critical for resilience and the recovery of post-trauma urban systems, there is disagreement over issues of causes and impacts. In this paper, we present analysis and findings of the impact of trauma on patterns of social-ecological diversity in New Orleans in the years following the Hurricane Katrina disaster (August-September 2005). We first provide an overview of conceptualizations of trauma and urban ecosystem resilience, and discuss programmatic research questions and objectives. We then examine city-wide land use / land cover change, showing that flood trauma reduced landscape-level ecological diversity across New Orleans. By reconstructing archival biotic surveys of indicator organisms, we also show that many ecological communities within New Orleans experienced an acute decline, followed by recovery over time. Census-based analyses indicate that ethno-racial diversity also increased over time. Unlike pre-Katrina conditions, ethno-racial and landscape-level ecological diversity were negatively correlated after the disaster as a consequence of contrasting responses to flooding. Our analyses and findings highlight the complexity and challenges of conceptualizing, operationalizing, and measuring social-ecological diversity and related processes of resilience

    PMI: A Delta Psi(m) Independent Pharmacological Regulator of Mitophagy

    Get PDF
    Mitophagy is central to mitochondrial and cellular homeostasis and operates via the PINK1/Parkin pathway targeting mitochondria devoid of membrane potential (ΔΨm) to autophagosomes. Although mitophagy is recognized as a fundamental cellular process, selective pharmacologic modulators of mitophagy are almost nonexistent. We developed a compound that increases the expression and signaling of the autophagic adaptor molecule P62/SQSTM1 and forces mitochondria into autophagy. The compound, P62-mediated mitophagy inducer (PMI), activates mitophagy without recruiting Parkin or collapsing ΔΨm and retains activity in cells devoid of a fully functional PINK1/Parkin pathway. PMI drives mitochondria to a process of quality control without compromising the bio-energetic competence of the whole network while exposing just those organelles to be recycled. Thus, PMI circumvents the toxicity and some of the nonspecific effects associated with the abrupt dissipation of ΔΨm by ionophores routinely used to induce mitophagy and represents a prototype pharmacological tool to investigate the molecular mechanisms of mitophagy

    Curcumin affects HSP60 folding activity and levels in neuroblastoma cells

    Get PDF
    The fundamental challenge in fighting cancer is the development of protective agents able to interfere with the classical pathways of malignant transformation, such as extracellular matrix remodeling, epithelial\u2013mesenchymal transition and, alteration of protein homeostasis. In the tumors of the brain, proteotoxic stress represents one of the main triggering agents for cell transformation. Curcumin is a natural compound with anti-inflammatory and anti-cancer properties with promising potential for the development of therapeutic drugs for the treatment of cancer as well as neurodegenerative diseases. Among the mediators of cancer development, HSP60 is a key factor for the maintenance of protein homeostasis and cell survival. High HSP60 levels were correlated, in particular, with cancer development and progression, and for this reason, we investigated the ability of curcumin to affect HSP60 expression, localization, and post-translational modifications using a neuroblastoma cell line. We have also looked at the ability of curcumin to interfere with the HSP60/HSP10 folding machinery. The cells were treated with 6, 12.5, and 25 \ub5M of curcumin for 24 h, and the flow cytometry analysis showed that the compound induced apoptosis in a dose-dependent manner with a higher percentage of apoptotic cells at 25 \ub5M. This dose of curcumin-induced a decrease in HSP60 protein levels and an upregulation of HSP60 mRNA expression. Moreover, 25 \ub5M of curcumin reduced HSP60 ubiquitination and nitration, and the chaperonin levels were higher in the culture media compared with the untreated cells. Furthermore, curcumin at the same dose was able to favor HSP60 folding activity. The reduction of HSP60 levels, together with the increase in its folding activity and the secretion in the media led to the supposition that curcumin might interfere with cancer progression with a protective mechanism involving the chaperonin

    A Protocol of Prevention and Protection Measures on New Occupational Risk Factors in Green Jobs in Italian Workplaces

    Get PDF
    The Green Transition aims to protect the health of our planet through changes at the economic, political, and social levels while also having a significant impact on the world of work through the creation of sustainable occupations, referred to as ‘Green Jobs’. The aim of our research was to identify the new emerging occupational risks associated with Green Jobs and to propose a protocol to promote the adoption of more appropriate prevention and protection measures. Starting with a few keywords chosen by the authors, we conducted a narrative review of the scientific articles published in the literature. The results obtained show that the new occupational risks emerging in the activities involved in the green transition are mainly related to the introduction of new materials or new technologies and to modes of production processes. These risks may pose a danger to those exposed to them on a daily basis, causing damage to health. Our protocol proposal calls for a more careful and adequate risk assessment for Green Jobs, providing specific training on these issues for new professionals in the sector and introducing specific prevention and protection measures for the different occupational risks analysed in the workplace. By adopting these recommendations in the workplace and conducting in-depth research on these issues, it will be possible to contribute to the improvement of prevention and protection for these new emerging occupational risks, achieving a positive economic impact and better safety conditions for workers

    Emerging occupational risks in green jobs: a review

    Get PDF
    Green jobs are to be understood as those jobs directly associated with specific sustainability issues and activities related to the efficiency, quality and innovation of goods and services offered, from an eco-sustainability perspective. The objective of the research was to fill knowledge gaps of new and emerging environmental and occupational risks related to sustainable activities and to understand the impact these might have on workers' psychological and physical well-being. A selection of several scientific articles and a critical analysis of the selected articles was carried out from the perspective of defining the concept of "emerging occupational risks in green jobs," using different keywords in the title or abstract as search criteria. Emerging occupational risks, most prevalent in the green sector are those determined by the rapid introduction of new technologies, new materials, new processes and work organizations. In order to be able to improve prevention and protection at work, it is necessary to act on a more careful and adequate risk assessment, the definition of new professional figures expert in green issues, the expansion of research and development of scientific knowledge, and the improvement of ergonomic aspects. Int J Occup Med Environ Health. 2024;37(3):244-56

    A role for TSPO in mitochondrial Ca2+ homeostasis and redox stress signaling

    Get PDF
    The 18 kDa translocator protein TSPO localizes on the outer mitochondrial membrane (OMM). Systematically overexpressed at sites of neuroinflammation it is adopted as a biomarker of brain conditions. TSPO inhibits the autophagic removal of mitochondria by limiting PARK2-mediated mitochondrial ubiquitination via a peri-organelle accumulation of reactive oxygen species (ROS). Here we describe that TSPO deregulates mitochondrial Ca2+ signaling leading to a parallel increase in the cytosolic Ca2+ pools that activate the Ca2+-dependent NADPH oxidase (NOX) thereby increasing ROS. The inhibition of mitochondrial Ca2+ uptake by TSPO is a consequence of the phosphorylation of the voltage-dependent anion channel (VDAC1) by the protein kinase A (PKA), which is recruited to the mitochondria, in complex with the Acyl-CoA binding domain containing 3 (ACBD3). Notably, the neurotransmitter glutamate, which contributes neuronal toxicity in age-dependent conditions, triggers this TSPO-dependent mechanism of cell signaling leading to cellular demise. TSPO is therefore proposed as a novel OMM-based pathway to control intracellular Ca2+ dynamics and redox transients in neuronal cytotoxicity
    • …
    corecore