1,895 research outputs found

    Prognostic value of nonangiogenic and angiogenic growth patterns in non-small-cell lung cancer

    Get PDF
    An essential prerequisite of nonangiogenic growth appears to be the ability of the tumour to preserve the parenchymal structures of the host tissue. This morphological feature is visible on a routine tissue section. Based on this feature, we classified haematoxylin and eosin-stained tissue sections from 279 patients with non-small-cell lung cancer into three growth patterns: destructive (angiogenic; n=196), papillary (intermediate; n=38) and alveolar (nonangiogenic; n=45). A Cox multiple regression model was used to test the prognostic value of growth patterns together with other relevant clinicopathological factors. For overall survival, growth pattern (P=0.007), N-status (P=0.001), age (P=0.020) and type of operation (P=0.056) were independent prognostic factors. For disease-free survival, only growth pattern (P=0.007) and N-status (P<0.001) had an independent prognostic value. Alveolar (hazard ratio=1.825, 95% confidence interval=1.117-2.980, P=0.016) and papillary (hazard ratio=1.977, 95% confidence interval=1.169-3.345, P=0.011) growth patterns were independent predictors of poor prognosis. The proposed classification has an independent prognostic value for overall survival as well as for disease-free survival, providing a possible explanation for survival differences of patients in the same disease stage

    Performance of photon reconstruction and identification with the CMS detector in proton-proton collisions at √s = 8 TeV

    Get PDF
    A description is provided of the performance of the CMS detector for photon reconstruction and identification in proton-proton collisions at a centre-of-mass energy of 8 TeV at the CERN LHC. Details are given on the reconstruction of photons from energy deposits in the electromagnetic calorimeter (ECAL) and the extraction of photon energy estimates. The reconstruction of electron tracks from photons that convert to electrons in the CMS tracker is also described, as is the optimization of the photon energy reconstruction and its accurate modelling in simulation, in the analysis of the Higgs boson decay into two photons. In the barrel section of the ECAL, an energy resolution of about 1% is achieved for unconverted or late-converting photons from Hγγ decays. Different photon identification methods are discussed and their corresponding selection efficiencies in data are compared with those found in simulated events
    • …
    corecore