60 research outputs found

    Electric-field induced capillary interaction of charged particles at a polar interface

    Full text link
    We study the electric-field induced capillary interaction of charged particles at a polar interface. The algebraic tails of the electrostatic pressure of each charge results in a deformation of the interface uρ4u\sim \rho ^{-4}. The resulting capillary interaction is repulsive and varies as ρ6\rho ^{-6} with the particle distance. As a consequence, electric-field induced capillary forces cannot be at the origin of the secondary minimum observed recently for charged PMMA particles at on oil-water interface.Comment: June 200

    Defect-unbinding transitions and inherent structures in two dimensions

    Full text link
    We present a large-scale (36000-particle) computational study of the "inherent structures" (IS) associated with equilibrium, two-dimensional, one-component Lennard-Jones systems. Our results provide strong support both for the inherent-structures theory of classical fluids, and for the KTHNY theory of two-stage melting in two dimensions. This support comes from the observation of three qualitatively distinct "phases" of inherent structures: a crystal, a "hexatic glass", and a "liquid glass". We also directly observe, in the IS, analogs of the two defect-unbinding transitions (respectively, of dislocations, and disclinations) believed to mediate the two equilibrium phase transitions. Each transition shows up in the inherent structures---although the free disclinations in the "liquid glass" are embedded in a percolating network of grain boundaries. The bond-orientational correlation functions of the inherent structures show the same progressive loss of order as do the three equilibrium phases: long-range to quasi-long-range to short-range.Comment: RevTeX, 8 pages, 15 figure

    Event-based relaxation of continuous disordered systems

    Full text link
    A computational approach is presented to obtain energy-minimized structures in glassy materials. This approach, the activation-relaxation technique (ART), achieves its efficiency by focusing on significant changes in the microscopic structure (events). The application of ART is illustrated with two examples: the structure of amorphous silicon, and the structure of Ni80P20, a metallic glass.Comment: 4 pages, revtex, epsf.sty, 3 figure

    Dynamics of monatomic liquids

    Full text link
    We present a theory of the dynamics of monatomic liquids built on two basic ideas: (1) The potential surface of the liquid contains three classes of intersecting nearly-harmonic valleys, one of which (the ``random'' class) vastly outnumbers the others and all whose members have the same depth and normal mode spectrum; and (2) the motion of particles in the liquid can be decomposed into oscillations in a single many-body valley, and nearly instantaneous inter-valley transitions called transits. We review the thermodynamic data which led to the theory, and we discuss the results of molecular dynamics (MD) simulations of sodium and Lennard-Jones argon which support the theory in more detail. Then we apply the theory to problems in equilibrium and nonequilibrium statistical mechanics, and we compare the results to experimental data and MD simulations. We also discuss our work in comparison with the QNM and INM research programs and suggest directions for future research.Comment: 53 pages, 16 figures. Differs from published version in using American English spelling and grammar (published version uses British English

    Thermodynamic Behavior of a Model Covalent Material Described by the Environment-Dependent Interatomic Potential

    Full text link
    Using molecular dynamics simulations we study the thermodynamic behavior of a single-component covalent material described by the recently proposed Environment-Dependent Interatomic Potential (EDIP). The parameterization of EDIP for silicon exhibits a range of unusual properties typically found in more complex materials, such as the existence of two structurally distinct disordered phases, a density decrease upon melting of the low-temperature amorphous phase, and negative thermal expansion coefficients for both the crystal (at high temperatures) and the amorphous phase (at all temperatures). Structural differences between the two disordered phases also lead to a first-order transition between them, which suggests the existence of a second critical point, as is believed to exist for amorphous forms of frozen water. For EDIP-Si, however, the unusual behavior is associated not only with the open nature of tetrahedral bonding but also with a competition between four-fold (covalent) and five-fold (metallic) coordination. The unusual behavior of the model and its unique ability to simulation the liquid/amorphous transition on molecular-dynamics time scales make it a suitable prototype for fundamental studies of anomalous thermodynamics in disordeered systems.Comment: 48 pages (double-spaced), 13 figure

    Geometry and field theory in multi-fractional spacetime

    Full text link
    We construct a theory of fields living on continuous geometries with fractional Hausdorff and spectral dimensions, focussing on a flat background analogous to Minkowski spacetime. After reviewing the properties of fractional spaces with fixed dimension, presented in a companion paper, we generalize to a multi-fractional scenario inspired by multi-fractal geometry, where the dimension changes with the scale. This is related to the renormalization group properties of fractional field theories, illustrated by the example of a scalar field. Depending on the symmetries of the Lagrangian, one can define two models. In one of them, the effective dimension flows from 2 in the ultraviolet (UV) and geometry constrains the infrared limit to be four-dimensional. At the UV critical value, the model is rendered power-counting renormalizable. However, this is not the most fundamental regime. Compelling arguments of fractal geometry require an extension of the fractional action measure to complex order. In doing so, we obtain a hierarchy of scales characterizing different geometric regimes. At very small scales, discrete symmetries emerge and the notion of a continuous spacetime begins to blur, until one reaches a fundamental scale and an ultra-microscopic fractal structure. This fine hierarchy of geometries has implications for non-commutative theories and discrete quantum gravity. In the latter case, the present model can be viewed as a top-down realization of a quantum-discrete to classical-continuum transition.Comment: 1+82 pages, 1 figure, 2 tables. v2-3: discussions clarified and improved (especially section 4.5), typos corrected, references added; v4: further typos correcte
    corecore