3,661 research outputs found
Resolving velocity space dynamics in continuum gyrokinetics
Many plasmas of interest to the astrophysical and fusion communities are
weakly collisional. In such plasmas, small scales can develop in the
distribution of particle velocities, potentially affecting observable
quantities such as turbulent fluxes. Consequently, it is necessary to monitor
velocity space resolution in gyrokinetic simulations. In this paper, we present
a set of computationally efficient diagnostics for measuring velocity space
resolution in gyrokinetic simulations and apply them to a range of plasma
physics phenomena using the continuum gyrokinetic code GS2. For the cases
considered here, it is found that the use of a collisionality at or below
experimental values allows for the resolution of plasma dynamics with
relatively few velocity space grid points. Additionally, we describe
implementation of an adaptive collision frequency which can be used to improve
velocity space resolution in the collisionless regime, where results are
expected to be independent of collision frequency.Comment: 20 pages, 11 figures, submitted to Phys. Plasma
Pair distribution function and structure factor of spherical particles
The availability of neutron spallation-source instruments that provide total
scattering powder diffraction has led to an increased application of real-space
structure analysis using the pair distribution function. Currently, the
analytical treatment of finite size effects within pair distribution refinement
procedures is limited. To that end, an envelope function is derived which
transforms the pair distribution function of an infinite solid into that of a
spherical particle with the same crystal structure. Distributions of particle
sizes are then considered, and the associated envelope function is used to
predict the particle size distribution of an experimental sample of gold
nanoparticles from its pair distribution function alone. Finally, complementing
the wealth of existing diffraction analysis, the peak broadening for the
structure factor of spherical particles, expressed as a convolution derived
from the envelope functions, is calculated exactly for all particle size
distributions considered, and peak maxima, offsets, and asymmetries are
discussed.Comment: 7 pages, 6 figure
The exact evaluation of the corner-to-corner resistance of an M x N resistor network: Asymptotic expansion
We study the corner-to-corner resistance of an M x N resistor network with
resistors r and s in the two spatial directions, and obtain an asymptotic
expansion of its exact expression for large M and N. For M = N, r = s =1, our
result is
R_{NxN} = (4/pi) log N + 0.077318 + 0.266070/N^2 - 0.534779/N^4 + O(1/N^6).Comment: 12 pages, re-arranged section
Accurate Transfer Maps for Realistic Beamline Elements: Part I, Straight Elements
The behavior of orbits in charged-particle beam transport systems, including
both linear and circular accelerators as well as final focus sections and
spectrometers, can depend sensitively on nonlinear fringe-field and
high-order-multipole effects in the various beam-line elements. The inclusion
of these effects requires a detailed and realistic model of the interior and
fringe fields, including their high spatial derivatives. A collection of
surface fitting methods has been developed for extracting this information
accurately from 3-dimensional field data on a grid, as provided by various
3-dimensional finite-element field codes. Based on these realistic field
models, Lie or other methods may be used to compute accurate design orbits and
accurate transfer maps about these orbits. Part I of this work presents a
treatment of straight-axis magnetic elements, while Part II will treat bending
dipoles with large sagitta. An exactly-soluble but numerically challenging
model field is used to provide a rigorous collection of performance benchmarks.Comment: Accepted to PRST-AB. Changes: minor figure modifications, reference
added, typos corrected
On the degrees of freedom of a semi-Riemannian metric
A semi-Riemannian metric in a n-manifold has n(n-1)/2 degrees of freedom,
i.e. as many as the number of components of a differential 2-form. We prove
that any semi-Riemannian metric can be obtained as a deformation of a constant
curvature metric, this deformation being parametrized by a 2-for
Massive Quiescent Cores in Orion. -- II. Core Mass Function
We have surveyed submillimeter continuum emission from relatively quiescent
regions in the Orion molecular cloud to determine how the core mass function in
a high mass star forming region compares to the stellar initial mass function.
Such studies are important for understanding the evolution of cores to stars,
and for comparison to formation processes in high and low mass star forming
regions. We used the SHARC II camera on the Caltech Submillimeter Observatory
telescope to obtain 350 \micron data having angular resolution of about 9
arcsec, which corresponds to 0.02 pc at the distance of Orion. Our analysis
combining dust continuum and spectral line data defines a sample of 51 Orion
molecular cores with masses ranging from 0.1 \Ms to 46 \Ms and a mean mass of
9.8 \Ms, which is one order of magnitude higher than the value found in typical
low mass star forming regions, such as Taurus. The majority of these cores
cannot be supported by thermal pressure or turbulence, and are probably
supercritical.They are thus likely precursors of protostars. The core mass
function for the Orion quiescent cores can be fitted by a power law with an
index equal to -0.850.21. This is significantly flatter than the Salpeter
initial mass function and is also flatter than the core mass function found in
low and intermediate star forming regions. Thus, it is likely that
environmental processes play a role in shaping the stellar IMF later in the
evolution of dense cores and the formation of stars in such regions.Comment: 30 pages, 10 figures, accepted by Ap
A High-Mass Protobinary System in the Hot Core W3(H2O)
We have observed a high-mass protobinary system in the hot core W3(H2O) with
the BIMA Array. Our continuum maps at wavelengths of 1.4mm and 2.8mm both
achieve sub-arcsecond angular resolutions and show a double-peaked morphology.
The angular separation of the two sources is 1.19" corresponding to 2.43X10^3
AU at the source distance of 2.04 kpc. The flux densities of the two sources at
1.4mm and 2.8mm have a spectral index of 3, translating to an opacity law of
kappa ~ nu. The small spectral indices suggest that grain growth has begun in
the hot core. We have also observed 5 K components of the CH3CN (12-11)
transitions. A radial velocity difference of 2.81 km/s is found towards the two
continuum peaks. Interpreting these two sources as binary components in orbit
about one another, we find a minimum mass of 22 Msun for the system. Radiative
transfer models are constructed to explain both the continuum and methyl
cyanide line observations of each source. Power-law distributions of both
density and temperature are derived. Density distributions close to the
free-fall value, r^-1.5, are found for both components, suggesting continuing
accretion. The derived luminosities suggest the two sources have equivalent
zero-age main sequence (ZAMS) spectral type B0.5 - B0. The nebular masses
derived from the continuum observations are about 5 Msun for source A and 4
Msun for source C. A velocity gradient previously detected may be explained by
unresolved binary rotation with a small velocity difference.Comment: 38 pages, 9 figures, accepted by The Astrophysical Journa
- âŠ