31,138 research outputs found

    Optomechanical position detection enhanced by de-amplification using intracavity squeezing

    Full text link
    It has been predicted and experimentally demonstrated that by injecting squeezed light into an optomechanical device it is possible to enhance the precision of a position measurement. Here, we present a fundamentally different approach where the squeezing is created directly inside the cavity by a nonlinear medium. Counterintuitively, the enhancement of the signal to noise ratio works by de-amplifying precisely the quadrature that is sensitive to the mechanical motion without losing quantum information. This enhancement works for systems with a weak optomechanical coupling and/or strong mechanical damping. This could allow for larger mechanical bandwidth of quantum limited detectors based on optomechanical devices. Our approach can be straightforwardly extended to Quantum Non Demolition (QND) qubit detection.Comment: references added, slight change

    Enhanced binding revisited for a spinless particle in non-relativistic QED

    Full text link
    We consider a spinless particle coupled to a quantized Bose field and show that such a system has a ground state for two classes of short-range potentials which are alone too weak to have a zero-energy resonance

    Chiral phase transitions in strong chromomagnetic fields at finite temperature and dimensional reduction

    Get PDF
    Dynamical fermion mass generation in external chromomagnetic fields is considered at non--zero temperature. The general features of dynamical chiral symmetry breaking (DχSBD\chi SB) are investigated for several field configurations in relation to their symmetry properties and the form of the quark spectrum. According to the fields, there arises dimensional reduction by one or two units. In all cases there exists DχSBD\chi SB even at weak quark attraction, confirming the idea about the dimensional insensitivity of this mechanism in a chromomagnetic field.Comment: LATEX file, 12 pages, no figure

    Spin-phonon coupling in antiferromagnetic chromium spinels

    Get PDF
    The temperature dependence of eigenfrequencies and intensities of the IR active modes has been investigated for the antiferromagnetic chromium spinel compounds CdCr2O4, ZnCr2O4, ZnCr2S4, ZnCr2Se4, and HgCr2S4 by IR spectroscopy for temperatures from 5 K to 300 K. At the transition into the magnetically ordered phases, and driven by spin-phonon coupling, most compounds reveal significant splittings of the phonon modes. This is true for geometrically frustrated CdCr2O4, and ZnCr2O4, for bond frustrated ZnCr2S4 and for ZnCr2Se4, which also is bond frustrated, but dominated by ferromagnetic exchange. The pattern of splitting is different for the different compounds and crucially depends on the nature of frustration and of the resulting spin order. HgCr2S4, which is almost ferromagnetic, exhibits no splitting of the eigenfrequencies, but shows significant shifts due to ferromagnetic spin fluctuations.Comment: 15 pages, 6 figure

    Optical phonons, spin correlations, and spin-phonon coupling in the frustrated pyrochlore magnets CdCr2O4 and ZnCr2O4

    Get PDF
    We report on infrared, Raman, magnetic susceptibility, and specific heat measurements on CdCr2O4 and ZnCr2O4 single crystals. We estimate the nearest-neighbor and next-nearest neighbor exchange constants from the magnetic susceptibility and extract the spin-spin correlation functions obtained from the magnetic susceptibility and the magnetic contribution to the specific heat. By comparing with the frequency shift of the infrared optical phonons above TN , we derive estimates for the spin-phonon coupling constants in these systems. The observation of phonon modes which are both Raman and infrared active suggest the loss of inversion symmetry below the Neel temperature in CdCr2O4 in agreement with theoretical predictions by Chern and coworkers [Phys. Rev. B 74, 060405 (2006)]. In ZnCr2O4 several new modes appear below TN, but no phonon modes could be detected which are both Raman and infrared active indicating the conservation of inversion symmetry in the low temperature phase.Comment: 11 pages, 13 figure

    Enhancement of ferromagnetism by nickel doping in the 112 cobaltite EuBaCo2O5.50

    Full text link
    The study of the ordered oxygen deficient perovskite EuBaCo2-xNixO5.50 shows that the doping of cobalt sites by nickel induces a strong ferromagnetic component at low temperature in the antiferromagnetic matrix of EuBaCo2O5.50. This system exhibits indeed phase separation, i.e. consists of ferromagnetic domains embedded in the antiferromagnetic matrix of EuBaCo2O5.50. Besides, a magnetic transition is observed for the first time at 40K in the undoped and nickel doped phases, which can be attributed to the ferromagnetic ordering of the Eu3+ moments below this temperature. Moreover sharp ultra magnetization multisteps are observed below 5K, characteristic of motion of domain walls in a strong pinning system and very different from any metamagnetic transition

    Multilayer gas cells for sub-Doppler spectroscopy

    Full text link
    We have carried out theoretical research on ultra-high resolution spectroscopy of atoms (or molecules) in the suggested cell with a series of plane-parallel thin gas layers between spatially separated gas regions of this cell for optical pumping and probing. It is shown the effective velocity selection of optically pumped atoms because of their specific transit time and collisional relaxation in such a cell, which lead to narrow sub-Doppler resonances in absorption of the probe monochromatic light beam. Resolution of this spectroscopic method is analyzed in cases of stationary and definite nonstationary optical pumping of atoms by the broadband radiation versus geometrical parameters of given cells and pumping intensity. The suggested multilayer gas cell is the compact analog of many parallel atomic (molecular) beams and may be used also as the basis of new compact optical frequency standards of high accuracy.Comment: 12 pages, 4 figure

    Open Access to Scientific Results and Data. European Union's Efforts through Openaire and Openaireplus FP7 Projects: Cypriot Participation

    Get PDF
    The paper presents the introduction of Open Access movement in the Academic environment, pros and cons of the adoption of OA by Universities and how the European Union is enforcing the use of Open Access. The ways of implementing OA, the policies of publishers and journals regarding the deposits of publications and the RoMEO and Juliet projects are also referred in an effort to give an overview of the conditions in exploiting Open Access, either as authors, publishers or end users. The adoption of the Berlin declaration on Open Access to Knowledge in the Sciences and Humanities by the Senate of the University of Cyprus is commented in the paper. Furthermore an analysis of the projects OpenAIRE and OpenAIREplus in which the University of Cyprus Library is involved is provided.University of Cyprus Library, 75 Kallipoleos Str. P. O. Box 20537 1678 Nicosia, Cyprus
    corecore