147,860 research outputs found
Synthetic horizontal branch morphology for different metallicities and ages under tidally enhanced stellar wind
It is believed that, except for metallicity, some other parameters are needed
to explain the horizontal branch (HB) morphology of globular clusters (GCs).
Furthermore, these parameters are considered to be correlated with the mass
loss of the red giant branch (RGB) stars. In our previous work, we proposed
that tidally enhanced stellar wind during binary evolution may affect the HB
morphology by enhancing the mass loss of the red giant primary. As a further
study, we now investigate the effects of metallicity and age on HB morphology
by considering tidally enhanced stellar winds during binary evolution. We
incorporated the tidally enhanced-stellar-wind model into Eggleton's stellar
evolution code to study the binary evolution. To study the effects of
metallicity and age on our final results, we conducted two sets of model
calculations: (i) for a fixed age, we used three metallicities, namely
Z=0.0001, 0.001, and 0.02. (ii) For a fixed metallicity, Z=0.001, we used five
ages in our model calculations: 14, 13, 12, 10, and 7 Gyr. We found that HB
morphology of GCs becomes bluer with decreasing metallicity, and old GCs
present bluer HB morphology than young ones. These results are consistent with
previous work. Although the envelope-mass distributions of zero-age HB stars
produced by tidally enhanced stellar wind are similar for different
metallicities, the synthetic HB under tidally enhanced stellar wind for Z=0.02
presented a distinct gap between red and blue HB. However, this feature was not
seen clearly in the synthetic HB for Z=0.001 and 0.0001. We also found that
higher binary fractions may make HB morphology become bluer, and we discussed
the results with recent observations.Comment: 16 pages, 6 figures, 3 tables, accepted for publication in Astronomy
& Astrophysic
Vision-based hand gesture interaction using particle filter, principle component analysis and transition network
Vision-based human-computer interaction is becoming important nowadays. It offers natural interaction with computers and frees users from mechanical interaction devices, which is favourable especially for wearable computers. This paper presents a human-computer interaction system based on a conventional webcam and hand gesture recognition. This interaction system works in real time and enables users to control a computer cursor with hand motions and gestures instead of a mouse. Five hand gestures are designed on behalf of five mouse operations: moving, left click, left-double click, right click and no-action. An algorithm based on Particle Filter is used for tracking the hand position. PCA-based feature selection is used for recognizing the hand gestures. A transition network is also employed for improving the accuracy and reliability of the interaction system. This interaction system shows good performance in the recognition and interaction test
Binary interactions and UV photometry on photometric redshift
Using the Hyperz code (Bolzonella et al. 2000) we present photometric
redshift estimates for a random sample of galaxies selected from the SDSS/DR7
and GALEX/DR4, for which spectroscopic redshifts are also available.
We confirm that the inclusion of ultraviolet photometry improves the accuracy
of photo-zs for those galaxies with g*-r* < 0.7 and z_spec < 0.2. We also
address the problem of how binary interactions can affect photo-z estimates,
and find that their effect is negligible.Comment: 2 pages 1 figure
Resonant Tunneling through S- and U-shaped Graphene Nanoribbons
We theoretically investigate resonant tunneling through S- and U-shaped
nanostructured graphene nanoribbons. A rich structure of resonant tunneling
peaks are found eminating from different quasi-bound states in the middle
region. The tunneling current can be turned on and off by varying the Fermi
energy. Tunability of resonant tunneling is realized by changing the width of
the left and/or right leads and without the use of any external gates.Comment: 6 pages, 7 figure
Binary Stellar Population Synthesis Model
Using Yunnan evolutionary population synthesis (EPS) models, we present
integrated colours, integrated spectral energy distributions (ISEDs) and
absorption-line indices defined by the Lick Observatory image dissector scanner
(Lick/IDS) system, for an extensive set of instantaneous-burst binary stellar
populations (BSPs) with interactions. By comparing the results for populations
with and without interactions we show that the inclusion of binary interactions
makes the appearance of the population substantially bluer. This effect raises
the derived age and metallicity of the population.
To be used in the studies of modern spectroscopic galaxy surveys at
intermediate/high spectral resolution, we also present intermediate- (3A) and
high-resolution (~0.3A) ISEDs and Lick/IDS absorption-line indices for BSPs. To
directly compare with observations the Lick/IDS absorption indices are also
presented by measuring them directly from the ISEDs.Comment: 2 pages 2 figure
Quantum states of a binary mixture of spinor Bose-Einstein condensates
We study the structure of quantum states for a binary mixture of spin-1
atomic Bose-Einstein condensates. In contrast to collision between identical
bosons, the s-wave scattering channel between inter-species does not conform to
a fixed symmetry. The spin-dependent Hamiltonian thus contains non-commuting
terms, making the exact eigenstates more challenging to obtain because they now
depend more generally on both the intra- and inter-species interactions. We
discuss two limiting cases, where the spin-dependent Hamiltonian reduces
respectively to sums of commuting operators. All eigenstates can then be
directly constructed, and they are independent of the detailed interaction
parameters.Comment: 5 pages, no figure
Atomic number fluctuations in a mixture of two spinor condensates
We study particle number fluctuations in the quantum ground states of a
mixture of two spin-1 atomic condensates when the interspecies spin-exchange
coupling interaction is adjusted. The two spin-1 condensates
forming the mixture are respectively ferromagnetic and polar in the absence of
an external magnetic (B-) field. We categorize all possible ground states using
the angular momentum algebra and compute their characteristic atom number
fluctuations, focusing especially on the the AA phase (when ),
where the ground state becomes fragmented and atomic number fluctuations
exhibit drastically different features from a single stand alone spin-1 polar
condensate. Our results are further supported by numerical simulations of the
full quantum many-body system.Comment: 5 pages, 2 figures, in press PR
Evolution of binary stars and its implications for evolutionary population synthesis
Most stars are members of binaries, and the evolution of a star in a close
binary system differs from that of an ioslated star due to the proximity of its
companion star. The components in a binary system interact in many ways and
binary evolution leads to the formation of many peculiar stars, including blue
stragglers and hot subdwarfs. We will discuss binary evolution and the
formation of blue stragglers and hot subdwarfs, and show that those hot objects
are important in the study of evolutionary population synthesis (EPS), and
conclude that binary interactions should be included in the study of EPS.
Indeed, binary interactions make a stellar population younger (hotter), and the
far-ultraviolet (UV) excess in elliptical galaxies is shown to be most likely
resulted from binary interactions. This has major implications for
understanding the evolution of the far-UV excess and elliptical galaxies in
general. In particular, it implies that the far-UV excess is not a sign of age,
as had been postulated prviously and predicts that it should not be strongly
dependent on the metallicity of the population, but exists universally from
dwarf ellipticals to giant ellipticals.Comment: Oral talk on IAUS 262, Brazi
A binary mixture of spinor atomic Bose-Einstein condensates
We study the ground state and classify its phase diagram for a mixture of two
spin-1 condensates in the absence of external magnetic (B-) field according to
atomic parameters for intra- and inter-species spin exchange coupling and
singlet pairing interaction. Ignoring the inter-species singlet pairing
interaction, the ground state phases are found analytically. Numerical approach
of simulated annealing is adopted when the singlet pairing interaction is
present. Our results on the phase diagram and the boundaries between phases
allow for easy identifications of quantum phase transitions, that can be
induced through the tuning of optical traps and atom numbers. They provide the
first insight and guidance for several ongoing experiments on mixtures of
spinor condensates.Comment: 5 pages, 4 figure
- …