308,303 research outputs found
Testing the isotropy of the Universe with type Ia supernovae in a model-independent way
In this paper, we study an anisotropic universe model with Bianchi-I metric
using Joint Light-curve Analysis (JLA) sample of type Ia supernovae (SNe Ia).
Because light-curve parameters of SNe Ia vary with different cosmological
models and SNe Ia samples, we fit the SNe Ia light-curve parameters and
cosmological parameters simultaneously employing Markov Chain Monte Carlo
method. Therefore, the results on the amount of deviation from isotropy of the
dark energy equation of state (), and the level of anisotropy of the
large-scale geometry () at present, are totally model-independent.
The constraints on the skewness and cosmic shear are and
. This result is consistent with a standard isotropic
universe (). However, a moderate level of anisotropy in the
geometry of the Universe and the equation of state of dark energy, is allowed.
Besides, there is no obvious evidence for a preferred direction of anisotropic
axis in this model.Comment: 10 pages, 5 figures, 5 tables, accepted for publication in MNRA
Study of glass preforms for glass fiber optics applications (study of space processing of ceramic materials)
The feasibility, and technical and economic desirability was studied of space processing of glass preforms for optical fiber transmission applications. The results indicate that space processing can produce glass preforms of equal quality at lower cost than earth bound production, and can produce diameter modulation in the glass preform which promotes mode coupling and lowers the dispersion. The glass composition can be modified through the evaporative and diffusion processes, and graded refractive index profiles can be produced. A brief summary of the state of the art in optical fiber transmission is included
Self-organizing peer-to-peer social networks
This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2008 The Authors.Peer-to-peer (P2P) systems provide a new solution to distributed information and resource sharing because of its outstanding properties in decentralization, dynamics, flexibility, autonomy, and cooperation, summarized as DDFAC in this paper. After a detailed analysis of the current P2P literature, this paper suggests to better exploit peer social relationships and peer autonomy to achieve efficient P2P structure design. Accordingly, this paper proposes Self-organizing peer-to-peer social networks (SoPPSoNs) to self-organize distributed peers in a decentralized way, in which neuron-like agents following extended Hebbian rules found in the brain activity represent peers to discover useful peer connections. The self-organized networks capture social associations of peers in resource sharing, and hence are called P2P social networks. SoPPSoNs have improved search speed and success rate as peer social networks are correctly formed. This has been verified through tests on real data collected from the Gnutella system. Analysis on the Gnutella data has verified that social associations of peers in reality are directed, asymmetric and weighted, validating the design of SoPPSoN. The tests presented in this paper have also evaluated the scalability of SoPPSoN, its performance under varied initial network connectivity and the effects of different learning rules.National Natural Science of Foundation of Chin
Microstructural characterisation and thermal stability of an Mg-Al-Sr alloy prepared by rheo-diecasting
A commercial Mg-6Al-2Sr (AJ62) alloy has been prepared by a semisolid rheo-diecasting (RDC) process. The microstructure of the RDC alloy exhibits typical semisolid solidification features, i.e., 8.4 vol% primary α-Mg globules (23 μm in diameter), formed in the slurry maker at the primary solidification stage, uniformly distributed in the matrix of fine α-Mg grain size (8.2 μm) and intergranular eutectic Al4Sr lamellae, which resulted from secondary solidification inside the die. A ternary Mg-Al-Sr phase was also observed. Heat treatment revealed the extreme thermal stability of the RDC AJ62 alloy. The hardness showed little change up to 12 hours at 450°C, whilst the Al4Sr eutectic lamellae were broken up, spheroidised and coarsened during the annealing. The RDC alloy offers superior mechanical properties, especially ductility, over the same alloy produced by high pressure die-casting
- …
