50 research outputs found

    Laser-induced degradation and damage morphology in polymer optical fibers

    Get PDF
    The radiation of pulsed laser systems can generate changes in various materials. On the one hand, these modifications can be used for a variety of applications i.e. laser welding, cutting and many more [1]. The precision and quality depends on the material and laser parameters. On the other hand, material changes are not always desired in other applications. When using optical materials such as optical fibers as a light guide or as a sensor, laser-induced damage effects inside the fiber are to be prevented to ensure constant light guidance and the reliable monitoring of a desired parameter. Therefore, investigations for quality assurance need to be performed. For this reason, this work investigates laserinduced damage in polymer optical fibers (POF) using a nanosecond pulsed laser system at a wavelength of 532 nm. The impact of different laser and fiber parameters on the long-term degradation behavior is observed. In addition, the overall degradation behavior as well as the knowledge gained by analyzing the damage morphology and distribution will be used to obtain a better understanding of the damage mechanisms

    Bulk and Boundary Critical Behavior at Lifshitz Points

    Full text link
    Lifshitz points are multicritical points at which a disordered phase, a homogeneous ordered phase, and a modulated ordered phase meet. Their bulk universality classes are described by natural generalizations of the standard Ï•4\phi^4 model. Analyzing these models systematically via modern field-theoretic renormalization group methods has been a long-standing challenge ever since their introduction in the middle of the 1970s. We survey the recent progress made in this direction, discussing results obtained via dimensionality expansions, how they compare with Monte Carlo results, and open problems. These advances opened the way towards systematic studies of boundary critical behavior at mm-axial Lifshitz points. The possible boundary critical behavior depends on whether the surface plane is perpendicular to one of the mm modulation axes or parallel to all of them. We show that the semi-infinite field theories representing the corresponding surface universality classes in these two cases of perpendicular and parallel surface orientation differ crucially in their Hamiltonian's boundary terms and the implied boundary conditions, and explain recent results along with our current understanding of this matter.Comment: Invited contribution to STATPHYS 22, to be published in the Proceedings of the 22nd International Conference on Statistical Physics (STATPHYS 22) of the International Union of Pure and Applied Physics (IUPAP), 4--9 July 2004, Bangalore, Indi

    Susceptibility amplitude ratio for generic competing systems

    Full text link
    We calculate the susceptibility amplitude ratio near a generic higher character Lifshitz point up to one-loop order. We employ a renormalization group treatment with LL independent scaling transformations associated to the various inequivalent subspaces in the anisotropic case in order to compute the ratio above and below the critical temperature and demonstrate its universality. Furthermore, the isotropic results with only one type of competition axes have also been shown to be universal. We describe how the simpler situations of mm-axial Lifshitz points as well as ordinary (noncompeting) systems can be retrieved from the present framework.Comment: 20 pages, no figure

    β-Catenin Signaling Increases during Melanoma Progression and Promotes Tumor Cell Survival and Chemoresistance

    Get PDF
    Beta-catenin plays an important role in embryogenesis and carcinogenesis by controlling either cadherin-mediated cell adhesion or transcriptional activation of target gene expression. In many types of cancers nuclear translocation of beta-catenin has been observed. Our data indicate that during melanoma progression an increased dependency on the transcriptional function of beta-catenin takes place. Blockade of beta-catenin in metastatic melanoma cell lines efficiently induces apoptosis, inhibits proliferation, migration and invasion in monolayer and 3-dimensional skin reconstructs and decreases chemoresistance. In addition, subcutaneous melanoma growth in SCID mice was almost completely inhibited by an inducible beta-catenin knockdown. In contrast, the survival of benign melanocytes and primary melanoma cell lines was less affected by beta-catenin depletion. However, enhanced expression of beta-catenin in primary melanoma cell lines increased invasive capacity in vitro and tumor growth in the SCID mouse model. These data suggest that beta-catenin is an essential survival factor for metastatic melanoma cells, whereas it is dispensable for the survival of benign melanocytes and primary, non-invasive melanoma cells. Furthermore, beta-catenin increases tumorigenicity of primary melanoma cell lines. The differential requirements for beta-catenin signaling in aggressive melanoma versus benign melanocytic cells make beta-catenin a possible new target in melanoma therapy

    On the use of electrochemical multi-sensors in biologically charged media

    No full text
    For the investigation and characterisation of liquid media with microorganisms, electrochemical sensors are typically used. Usually the microorganisms are part of the process or cannot be excluded for different reasons. This paper describes the application of various electrodes, which are partly miniaturised and combined with multi-sensor systems for several applications in processes containing microorganisms. The application in industrial bioprocesses like beer brewing and biogas production, and in paper manufacturing, is described. The performance of the multi-sensor systems, and thus their suitability for a contribution to improved process monitoring, is evaluated. The multi-sensor systems represent an interesting tool to enhance monitoring capacities at installed systems without the necessity for huge port installations and offer the possibility to monitor the spatial distribution of gradients. The developed systems presented here allow location-independent measurements in process plants with a variable positioning of the sensors in the industrial reactors
    corecore