6,107 research outputs found

    Structural design options for the new 34 meter beam waveguide antenna

    Get PDF
    In addition to the successful network of 34 m High Efficiency antennas recently built by JPL, the Deep Space Network (DSN) is embarking on the construction of a 34 m high performance, research and development antenna with beam waveguide optics at the Venus site. The construction of this antenna presents many engineering challenges in the area of structural, mechanical, RF, and pointing system design. A set of functional and structural design requirements is outlined to guide analysts in the final configuration selection. Five design concepts are presented covering both the conventional center-fed beam optics as well as the nonconventional, by-pass beam configuration. The merits of each concept are discussed with an emphasis on obtaining a homologous design. The preliminary results of structural optimization efforts, currently in progress, are promising, indicating the feasibility of meeting, as a minimum, all X-band (8.4 GHz) requirements, with a goal towards meeting Ka-band (32 GHz) quality performance, at the present budget constraints

    Reconstruction of Liouvillian Superoperators

    Full text link
    We show how to determine (reconstruct) a master equation governing the time evolution of an open quantum system. We present a general algorithm for the reconstruction of the corresponding Liouvillian superoperators. Dynamics of a two-level atom in various environments is discussed in detail.Comment: 4 pages, revtex, 1 eps figure, accepted for publication in Phys. Rev.

    Optimal estimation of group transformations using entanglement

    Full text link
    We derive the optimal input states and the optimal quantum measurements for estimating the unitary action of a given symmetry group, showing how the optimal performance is obtained with a suitable use of entanglement. Optimality is defined in a Bayesian sense, as minimization of the average value of a given cost function. We introduce a class of cost functions that generalizes the Holevo class for phase estimation, and show that for states of the optimal form all functions in such a class lead to the same optimal measurement. A first application of the main result is the complete proof of the optimal efficiency in the transmission of a Cartesian reference frame. As a second application, we derive the optimal estimation of a completely unknown two-qubit maximally entangled state, provided that N copies of the state are available. In the limit of large N, the fidelity of the optimal estimation is shown to be 1-3/(4N).Comment: 11 pages, no figure

    Local unitary versus local Clifford equivalence of stabilizer and graph states

    Get PDF
    The equivalence of stabilizer states under local transformations is of fundamental interest in understanding properties and uses of entanglement. Two stabilizer states are equivalent under the usual stochastic local operations and classical communication criterion if and only if they are equivalent under local unitary (LU) operations. More surprisingly, under certain conditions, two LU equivalent stabilizer states are also equivalent under local Clifford (LC) operations, as was shown by Van den Nest et al. [Phys. Rev. \textbf{A71}, 062323]. Here, we broaden the class of stabilizer states for which LU equivalence implies LC equivalence (LU⇔LCLU\Leftrightarrow LC) to include all stabilizer states represented by graphs with neither cycles of length 3 nor 4. To compare our result with Van den Nest et al.'s, we show that any stabilizer state of distance ÎŽ=2\delta=2 is beyond their criterion. We then further prove that LU⇔LCLU\Leftrightarrow LC holds for a more general class of stabilizer states of ÎŽ=2\delta=2. We also explicitly construct graphs representing ÎŽ>2\delta>2 stabilizer states which are beyond their criterion: we identify all 58 graphs with up to 11 vertices and construct graphs with 2m−12^m-1 (m≄4m\geq 4) vertices using quantum error correcting codes which have non-Clifford transversal gates.Comment: Revised version according to referee's comments. To appear in Physical Review

    Clean Positive Operator Valued Measures

    Full text link
    In quantum mechanics the statistics of the outcomes of a measuring apparatus is described by a positive operator valued measure (POVM). A quantum channel transforms POVM's into POVM's, generally irreversibly, thus loosing some of the information retrieved from the measurement. This poses the problem of which POVM's are "undisturbed", namely they are not irreversibly connected to another POVM. We will call such POVM clean. In a sense, the clean POVM's would be "perfect", since they would not have any additional "extrinsical" noise. Quite unexpectedly, it turns out that such cleanness property is largely unrelated to the convex structure of POVM's, and there are clean POVM's that are not extremal and vice-versa. In this paper we solve the cleannes classification problem for number n of outcomes n<=d (d dimension of the Hilbert space), and we provide a a set of either necessary or sufficient conditions for n>d, along with an iff condition for the case of informationally complete POVM's for n=d^2.Comment: Minor changes. amsart 21 pages. Accepted for publication on J. Math. Phy

    Decoherence Free Subspaces for Quantum Computation

    Full text link
    Decoherence in quantum computers is formulated within the Semigroup approach. The error generators are identified with the generators of a Lie algebra. This allows for a comprehensive description which includes as a special case the frequently assumed spin-boson model. A generic condition is presented for error-less quantum computation: decoherence-free subspaces are spanned by those states which are annihilated by all the generators. It is shown that these subspaces are stable to perturbations and moreover, that universal quantum computation is possible within them.Comment: 4 pages, no figures. Conditions for decoherence-free subspaces made more explicit, updated references. To appear in PR

    Experimental implementation of an adiabatic quantum optimization algorithm

    Get PDF
    We report the realization of a nuclear magnetic resonance computer with three quantum bits that simulates an adiabatic quantum optimization algorithm. Adiabatic quantum algorithms offer new insight into how quantum resources can be used to solve hard problems. This experiment uses a particularly well suited three quantum bit molecule and was made possible by introducing a technique that encodes general instances of the given optimization problem into an easily applicable Hamiltonian. Our results indicate an optimal run time of the adiabatic algorithm that agrees well with the prediction of a simple decoherence model.Comment: REVTeX, 5 pages, 4 figures, improved lay-out; accepted for publication in Physical Review Letter

    Efficient implementation of selective recoupling in heteronuclear spin systems using Hadamard matrices

    Get PDF
    We present an efficient scheme which couples any designated pair of spins in heteronuclear spin systems. The scheme is based on the existence of Hadamard matrices. For a system of nn spins with pairwise coupling, the scheme concatenates cncn intervals of system evolution and uses at most cn2c n^2 pulses where c≈1c \approx 1. Our results demonstrate that, in many systems, selective recoupling is possible with linear overhead, contrary to common speculation that exponential effort is always required.Comment: 7 pages, 4 figures, mypsfig2, revtex, submitted April 27, 199

    Preserving coherence in quantum computation by pairing quantum bits

    Full text link
    A scheme is proposed for protecting quantum states from both independent decoherence and cooperative decoherence. The scheme operates by pairing each qubit (two-state quantum system) with an ancilla qubit and by encoding the states of the qubits into the corresponding coherence-preserving states of the qubit-pairs. In this scheme, the amplitude damping (loss of energy) is prevented as well as the phase damping (dephasing) by a strategy called the free-Hamiltonian-elimination We further extend the scheme to include quantum gate operations and show that loss and decoherence during the gate operations can also be prevented.Comment: 12 pages, Latex, some correction in the reference and introduction. Jour-ref: Phys. Rev. Lett. 79, 1953, 199
    • 

    corecore