262,441 research outputs found

    Spin Dynamics in the Second Subband of a Quasi Two Dimensional System Studied in a Single Barrier Heterostructure by Time Resolved Kerr Rotation

    Full text link
    By biasing a single barrier heterostructure with a 500nm-thick GaAs layer as the absorption layer, the spin dynamics for both of the first and second subband near the AlAs barrier are examined. We find that when simultaneously scanning the photon energy of both the probe and pump beams, a sign reversal of the Kerr rotation (KR) takes place as long as the probe photons break away the first subband and probe the second subband. This novel feature, while stemming from the exchange interaction, has been used to unambiguously distinguish the different spin dynamics (T21T_2^{1*} and T22T_2^{2*}) for the first and second subbands under the different conditions by their KR signs (negative for 1st1^{st} and positive for 2nd2^{nd}). In the zero magnetic field, by scanning the wavelength towards the short wavelength, T21T_2^{1*} decreases in accordance with the D'yakonov-Perel' (DP) spin decoherence mechanism. At 803nm, T22T_2^{2*}(450ps) becomes ten times longer than T21T_2^{1*}(50ps). However, the value of T22T_2^{2*} at 803nm is roughly the same as the value of T21T_2^{1*} at 815nm. A new feature has been disclosed at the wavelength of 811nm under the bias of -0.3V (807nm under the bias of -0.6V) that the spin coherence times (T21T_2^{1*} and T22T_2^{2*}) and the effective gg^* factors (g(E1)|g^*(E1)| and g(E2)|g^*(E2)|) all display a sudden change, due to the "resonant" spin exchange coupling between two spin opposite bands.Comment: 9pages, 3 figure

    Evolution of Surface Deformations of Weakly-Bound Nuclei in the Continuum

    Full text link
    We study weakly-bound deformed nuclei based on the coordinate-space Skyrme Hartree-Fock-Bogoliubov approach, in which a large box is employed for treating the continuum and surface diffuseness. Approaching the limit of core-halo deformation decoupling, calculations found an exotic "egg"-like structure consisting of a spherical core plus a prolate halo in 38^{38}Ne, in which the resonant continuum plays an essential role. Generally the halo probability and the decoupling effect in heavy nuclei are reduced compared to light nuclei, due to denser level densities around Fermi surfaces. However, deformed halos in medium-mass nuclei are possible with sparse levels of negative parity, for example, in 110^{110}Ge. The surface deformations of pairing density distributions are also influenced by the decoupling effect and are sensitive to the effective pairing Hamiltonian.Comment: 5 pages and 5 figure

    Half-skyrmion picture of single hole doped CuO_2 plane

    Full text link
    Based on the Zhang-Rice singlet picture, it is argued that the half-skyrmion is created by the doped hole in the single hole doped high-T_c cuprates with N'eel ordering. The spin configuration around the Zhang-Rice singlet, which has the form of superposition of the two different d-orbital hole spin states, is studied within the non-linear \sigma model and the CP^1 model. The spin configurations associated with each hole spin state are obtained, and we find that the superposition of these spin configuration turns out to be the half-skyrmion that is characterized by a half of the topological charge. The excitation spectrum of the half-skyrmion is obtained by making use of Lorentz invariance of the effective theory and is qualitatively in good agreement with angle resolved photoemission spectroscopy on the parent compunds. Estimated values of the parameters contained in the excitation spectrum are in good agreement with experimentally obtained values. The half-skyrmion theory suggests a picture for the difference between the hole doped compounds and the electron doped compounds.Comment: 13 pages, 2 figures, to be published in Phys. Rev.

    Exact evaluation of the causal spectrum and localization properties of electronic states on a scale-free network

    Full text link
    A nearest-neighbor tight-binding model on a tree structure is investigated. The full energy spectrum of the normalized Hamiltonian can be expressed in terms of successively increasing number of contributions at any finite step of construction of the tree, resulting in a causal chain. The degree of quantum localization of any eigenstate, measured by the inverse participation ratio (IPR), is also analytically expressed by means of terms in corresponding eigenvalue chain. The resulting IPR scaling behavior is expressed by the tails of eigenvalue chains as well.Comment: BJ Yang and PC Xie contribute equally to this wor

    Electrical Control of Dynamic Spin Splitting Induced by Exchange Interaction as Revealed by Time Resolved Kerr Rotation in a Degenerate Spin-Polarized Electron Gas

    Full text link
    The manipulation of spin degree of freedom have been demonstrated in spin polarized electron plasma in a heterostructure by using exchange-interaction induced dynamic spin splitting rather than the Rashba and Dresselhaus types, as revealed by time resolved Kerr rotation. The measured spin splitting increases from 0.256meV to 0.559meV as the bias varies from -0.3V to -0.6V. Both the sign switch of Kerr signal and the phase reversal of Larmor precessions have been observed with biases, which all fit into the framework of exchange-interaction-induced spin splitting. The electrical control of it may provide a new effective scheme for manipulating spin-selected transport in spin FET-like devices.Comment: 8 pages, 3 figures ; added some discussion

    Statistical Geometry of Packing Defects of Lattice Chain Polymer from Enumeration and Sequential Monte Carlo Method

    Get PDF
    Voids exist in proteins as packing defects and are often associated with protein functions. We study the statistical geometry of voids in two-dimensional lattice chain polymers. We define voids as topological features and develop a simple algorithm for their detection. For short chains, void geometry is examined by enumerating all conformations. For long chains, the space of void geometry is explored using sequential Monte Carlo importance sampling and resampling techniques. We characterize the relationship of geometric properties of voids with chain length, including probability of void formation, expected number of voids, void size, and wall size of voids. We formalize the concept of packing density for lattice polymers, and further study the relationship between packing density and compactness, two parameters frequently used to describe protein packing. We find that both fully extended and maximally compact polymers have the highest packing density, but polymers with intermediate compactness have low packing density. To study the conformational entropic effects of void formation, we characterize the conformation reduction factor of void formation and found that there are strong end-effect. Voids are more likely to form at the chain end. The critical exponent of end-effect is twice as large as that of self-contacting loop formation when existence of voids is not required. We also briefly discuss the sequential Monte Carlo sampling and resampling techniques used in this study.Comment: 29 pages, including 12 figure

    Defining the Structural Consequences of Mechanism-Based Inactivation of Mammalian Cytochrome P450 2B4 Using Resonance Raman Spectroscopy

    Get PDF
    In view of the potent oxidizing strength of cytochrome P450 intermediates, it is not surprising that certain substrates can give rise to reactive species capable of attacking the heme or critical distal-pocket protein residues to irreversibly modify the enzyme in a process known as mechanism-based (MB) inactivation, a result that can have serious physiological consequences leading to adverse drug−drug interactions and toxicity. While methods exist to document the attachment of these substrate fragments, it is more difficult to gain insight into the structural basis for the altered functional properties of these modified enzymes. In response to this pressing need to better understand MB inhibition, we here report the first application of resonance Raman spectroscopy to study the inactivation of a truncated form of mammalian CYP2B4 by the acetylenic inhibitor 4-(tert-butyl)phenylacetylene, whose activated form is known to attach to the distal-pocket T302 residue of CYP2B4

    Odd-even mass staggering with Skyrme-Hartree-Fock-Bogoliubov theory

    Full text link
    We have studied odd-even nuclear mass staggering with the Skyrme-Hartree-Fock-Bogoliubov theory by employing isoscalar and isovector contact pairing interactions. By reproducing the empirical odd-even mass differences of the Sn isotopic chain, the strengths of pairing interactions are determined. The optimal strengths adjusted in this work can give better description of odd-even mass differences than that fitted by reproducing the experimental neutron pairing gap of 120^{120}Sn.Comment: 9 pages, 3 figures, submitted to PRC Brief Repor
    corecore