262,441 research outputs found
Spin Dynamics in the Second Subband of a Quasi Two Dimensional System Studied in a Single Barrier Heterostructure by Time Resolved Kerr Rotation
By biasing a single barrier heterostructure with a 500nm-thick GaAs layer as
the absorption layer, the spin dynamics for both of the first and second
subband near the AlAs barrier are examined. We find that when simultaneously
scanning the photon energy of both the probe and pump beams, a sign reversal of
the Kerr rotation (KR) takes place as long as the probe photons break away the
first subband and probe the second subband. This novel feature, while stemming
from the exchange interaction, has been used to unambiguously distinguish the
different spin dynamics ( and ) for the first and second
subbands under the different conditions by their KR signs (negative for
and positive for ). In the zero magnetic field, by scanning
the wavelength towards the short wavelength, decreases in accordance
with the D'yakonov-Perel' (DP) spin decoherence mechanism. At 803nm,
(450ps) becomes ten times longer than (50ps). However, the
value of at 803nm is roughly the same as the value of at
815nm. A new feature has been disclosed at the wavelength of 811nm under the
bias of -0.3V (807nm under the bias of -0.6V) that the spin coherence times
( and ) and the effective factors ( and
) all display a sudden change, due to the "resonant" spin exchange
coupling between two spin opposite bands.Comment: 9pages, 3 figure
Evolution of Surface Deformations of Weakly-Bound Nuclei in the Continuum
We study weakly-bound deformed nuclei based on the coordinate-space Skyrme
Hartree-Fock-Bogoliubov approach, in which a large box is employed for treating
the continuum and surface diffuseness. Approaching the limit of core-halo
deformation decoupling, calculations found an exotic "egg"-like structure
consisting of a spherical core plus a prolate halo in Ne, in which the
resonant continuum plays an essential role. Generally the halo probability and
the decoupling effect in heavy nuclei are reduced compared to light nuclei, due
to denser level densities around Fermi surfaces. However, deformed halos in
medium-mass nuclei are possible with sparse levels of negative parity, for
example, in Ge. The surface deformations of pairing density
distributions are also influenced by the decoupling effect and are sensitive to
the effective pairing Hamiltonian.Comment: 5 pages and 5 figure
Half-skyrmion picture of single hole doped CuO_2 plane
Based on the Zhang-Rice singlet picture, it is argued that the half-skyrmion
is created by the doped hole in the single hole doped high-T_c cuprates with
N'eel ordering. The spin configuration around the Zhang-Rice singlet, which has
the form of superposition of the two different d-orbital hole spin states, is
studied within the non-linear \sigma model and the CP^1 model. The spin
configurations associated with each hole spin state are obtained, and we find
that the superposition of these spin configuration turns out to be the
half-skyrmion that is characterized by a half of the topological charge. The
excitation spectrum of the half-skyrmion is obtained by making use of Lorentz
invariance of the effective theory and is qualitatively in good agreement with
angle resolved photoemission spectroscopy on the parent compunds. Estimated
values of the parameters contained in the excitation spectrum are in good
agreement with experimentally obtained values. The half-skyrmion theory
suggests a picture for the difference between the hole doped compounds and the
electron doped compounds.Comment: 13 pages, 2 figures, to be published in Phys. Rev.
Exact evaluation of the causal spectrum and localization properties of electronic states on a scale-free network
A nearest-neighbor tight-binding model on a tree structure is investigated.
The full energy spectrum of the normalized Hamiltonian can be expressed in
terms of successively increasing number of contributions at any finite step of
construction of the tree, resulting in a causal chain. The degree of quantum
localization of any eigenstate, measured by the inverse participation ratio
(IPR), is also analytically expressed by means of terms in corresponding
eigenvalue chain. The resulting IPR scaling behavior is expressed by the tails
of eigenvalue chains as well.Comment: BJ Yang and PC Xie contribute equally to this wor
Electrical Control of Dynamic Spin Splitting Induced by Exchange Interaction as Revealed by Time Resolved Kerr Rotation in a Degenerate Spin-Polarized Electron Gas
The manipulation of spin degree of freedom have been demonstrated in spin
polarized electron plasma in a heterostructure by using exchange-interaction
induced dynamic spin splitting rather than the Rashba and Dresselhaus types, as
revealed by time resolved Kerr rotation. The measured spin splitting increases
from 0.256meV to 0.559meV as the bias varies from -0.3V to -0.6V. Both the sign
switch of Kerr signal and the phase reversal of Larmor precessions have been
observed with biases, which all fit into the framework of
exchange-interaction-induced spin splitting. The electrical control of it may
provide a new effective scheme for manipulating spin-selected transport in spin
FET-like devices.Comment: 8 pages, 3 figures ; added some discussion
Statistical Geometry of Packing Defects of Lattice Chain Polymer from Enumeration and Sequential Monte Carlo Method
Voids exist in proteins as packing defects and are often associated with
protein functions. We study the statistical geometry of voids in
two-dimensional lattice chain polymers. We define voids as topological features
and develop a simple algorithm for their detection. For short chains, void
geometry is examined by enumerating all conformations. For long chains, the
space of void geometry is explored using sequential Monte Carlo importance
sampling and resampling techniques. We characterize the relationship of
geometric properties of voids with chain length, including probability of void
formation, expected number of voids, void size, and wall size of voids. We
formalize the concept of packing density for lattice polymers, and further
study the relationship between packing density and compactness, two parameters
frequently used to describe protein packing. We find that both fully extended
and maximally compact polymers have the highest packing density, but polymers
with intermediate compactness have low packing density. To study the
conformational entropic effects of void formation, we characterize the
conformation reduction factor of void formation and found that there are strong
end-effect. Voids are more likely to form at the chain end. The critical
exponent of end-effect is twice as large as that of self-contacting loop
formation when existence of voids is not required. We also briefly discuss the
sequential Monte Carlo sampling and resampling techniques used in this study.Comment: 29 pages, including 12 figure
Defining the Structural Consequences of Mechanism-Based Inactivation of Mammalian Cytochrome P450 2B4 Using Resonance Raman Spectroscopy
In view of the potent oxidizing strength of cytochrome P450 intermediates, it is not surprising that certain substrates can give rise to reactive species capable of attacking the heme or critical distal-pocket protein residues to irreversibly modify the enzyme in a process known as mechanism-based (MB) inactivation, a result that can have serious physiological consequences leading to adverse drug−drug interactions and toxicity. While methods exist to document the attachment of these substrate fragments, it is more difficult to gain insight into the structural basis for the altered functional properties of these modified enzymes. In response to this pressing need to better understand MB inhibition, we here report the first application of resonance Raman spectroscopy to study the inactivation of a truncated form of mammalian CYP2B4 by the acetylenic inhibitor 4-(tert-butyl)phenylacetylene, whose activated form is known to attach to the distal-pocket T302 residue of CYP2B4
Odd-even mass staggering with Skyrme-Hartree-Fock-Bogoliubov theory
We have studied odd-even nuclear mass staggering with the
Skyrme-Hartree-Fock-Bogoliubov theory by employing isoscalar and isovector
contact pairing interactions. By reproducing the empirical odd-even mass
differences of the Sn isotopic chain, the strengths of pairing interactions are
determined. The optimal strengths adjusted in this work can give better
description of odd-even mass differences than that fitted by reproducing the
experimental neutron pairing gap of Sn.Comment: 9 pages, 3 figures, submitted to PRC Brief Repor
- …
