10,000 research outputs found
Translational Invariance and the Anisotropy of the Cosmic Microwave Background
Primordial quantum fluctuations produced by inflation are conventionally
assumed to be statistically homogeneous, a consequence of translational
invariance. In this paper we quantify the potentially observable effects of a
small violation of translational invariance during inflation, as characterized
by the presence of a preferred point, line, or plane. We explore the imprint
such a violation would leave on the cosmic microwave background anisotropy, and
provide explicit formulas for the expected amplitudes of
the spherical-harmonic coefficients.Comment: Notation improve
Laser pulse annealing of ion-implanted GaAs
GaAs single-crystals wafers are implanted at room temperature with 400-keV Te + ions to a dose of 1×10^15 cm^–2 to form an amorphous surface layer. The recrystallization of this layer is investigated by backscattering spectrometry and transmission electron microscopy after transient annealing by Q-switched ruby laser irradiation. An energy density threshold of about 1.0 J/cm^2 exists above which the layer regrows epitaxially. Below the threshold the layer is polycrystalline; the grain size increases as the energy density approaches threshold. The results are analogous to those reported for the elemental semiconductors, Si and Ge. The threshold value observed is in good agreement with that predicted by the simple model successfully applied previously to Si and Ge
Heteroepitaxy of deposited amorphous layer by pulsed electron-beam irradiation
We demonstrate that a single short pulse of electron irradiation of appropriate energy is capable of recrystallizing epitaxially an amorphous Ge layer deposited on either or Si single-crystal substrate. The primary defects observed in the case were dislocations, whereas stacking faults were observed in samples
Epitaxial growth of deposited amorphous layer by laser annealing
We demonstrate that a single short pulse of laser irradiation of appropriate energy is capable of recrystallizing in open air an amorphous Si layer deposited on a (100) single-crystal substrate into an epitaxial layer. The laser pulse annealing technique is shown to overcome the interfacial oxide obstacle which usually leads to polycrystalline formation in normal thermal annealing
Production of large-particle-size monodisperse latexes
The research program achieved two objectives: (1) it has refined and extended the experimental techniques for preparing monodisperse latexes in quantity on the ground up to a particle diameter of 10 microns; and (2) it has demonstrated that a microgravity environment can be used to grow monodisperse latexes to larger sizes, where the limitations in size have yet to be defined. The experimental development of the monodisperse latex reactor (MLR) and the seeded emulsion polymerizations carried out in the laboratory prototype of the flight hardware, as a function of the operational parameters is discussed. The emphasis is directed towards the measurement, interpretation, and modeling of the kinetics of seeded emulsion polymerization and successive seeded emulsion polymerization. The recipe development of seeded emulsion polymerization as a function of particle size is discussed. The equilibrium swelling of latex particles with monomers was investigated both theoretically and experimentally. Extensive studies are reported on both the type and concentration of initiators, surfactants, and inhibitors, which eventually led to the development of the flight recipes. The experimental results of the flight experiments are discussed, as well as the experimental development of inhibition of seeded emulsion polymerization in terms of time of inhibition and the effect of inhibitors on the kinetics of polymerization
The first products made in space: Monodisperse latex particles
The preparation of large particle size 3 to 30 micrometer monodisperse latexes in space confirmed that original rationale unequivocally. The flight polymerizations formed negligible amounts of coagulum as compared to increasing amounts for the ground-based polymerizations. The number of offsize large particles in the flight latexes was smaller than in the ground-based latexes. The particle size distribution broadened and more larger offsize particles were formed when the polymerizations of the partially converted STS-4 latexes were completed on Earth. Polymerization in space also showed other unanticipated advantages. The flight latexes had narrower particle size distributions than the ground-based latexes. The particles of the flight latexes were more perfect spheres than those of the ground-based latexes. The superior uniformity of the flight latexes was confirmed by the National Bureau of Standards acceptance of the 10 micrometer STS-6 latex and the 30 micrometer STS-11 latexes as Standard Reference Materials, the first products made in space for sale on Earth. The polymerization rates in space were the same as those on Earth within experimental error. Further development of the ground-based polymerization recipes gave monodisperse particles as large as 100 micrometer with tolerable levels of coagulum, but their uniformity was significantly poorer than the flight latexes. Careful control of the polymerization parameters gave uniform nonspherical particles: symmetrical and asymmetrical doublets, ellipsoids, egg-shaped, ice cream cone-shaped, and popcorn-shaped particles
- …