10,958 research outputs found

    Towards Long-endurance Flight: Design and Implementation of a Variable-pitch Gasoline-engine Quadrotor

    Full text link
    Majority of today's fixed-pitch, electric-power quadrotors have short flight endurance (<< 1 hour) which greatly limits their applications. This paper presents a design methodology for the construction of a long-endurance quadrotor using variable-pitch rotors and a gasoline-engine. The methodology consists of three aspects. Firstly, the rotor blades and gasoline engine are selected as a pair, so that sufficient lift can be comfortably provided by the engine. Secondly, drivetrain and airframe are designed. Major challenges include airframe vibration minimization and power transmission from one engine to four rotors while keeping alternate rotors contra-rotating. Lastly, a PD controller is tuned to facilitate preliminary flight tests. The methodology has been verified by the construction and successful flight of our gasoline quadrotor prototype, which is designed to have a flight time of 2 to 3 hours and a maximum take-off weight of 10 kg.Comment: 6 page

    A Hybrid Quantum Encoding Algorithm of Vector Quantization for Image Compression

    Full text link
    Many classical encoding algorithms of Vector Quantization (VQ) of image compression that can obtain global optimal solution have computational complexity O(N). A pure quantum VQ encoding algorithm with probability of success near 100% has been proposed, that performs operations 45sqrt(N) times approximately. In this paper, a hybrid quantum VQ encoding algorithm between classical method and quantum algorithm is presented. The number of its operations is less than sqrt(N) for most images, and it is more efficient than the pure quantum algorithm. Key Words: Vector Quantization, Grover's Algorithm, Image Compression, Quantum AlgorithmComment: Modify on June 21. 10pages, 3 figure

    Are spectroscopic factors from transfer reactions consistent with asymptotic normalisation coefficients?

    Full text link
    It is extremely important to devise a reliable method to extract spectroscopic factors from transfer cross sections. We analyse the standard DWBA procedure and combine it with the asymptotic normalisation coefficient, extracted from an independent data set. We find that the single particle parameters used in the past generate inconsistent asymptotic normalization coefficients. In order to obtain a consistent spectroscopic factor, non-standard parameters for the single particle overlap functions can be used but, as a consequence, often reduced spectroscopic strengths emerge. Different choices of optical potentials and higher order effects in the reaction model are also studied. Our test cases consist of: 14^{14}C(d,p)15^{15}C(g.s.) at Edlab=14E_d^{lab}=14 MeV, 16^{16}O(d,p)17^{17}O(g.s.) at Edlab=15E_d^{lab}=15 MeV and 40^{40}Ca(d,p)41^{41}Ca(g.s.) at Edlab=11E_d^{lab}=11 MeV. We underline the importance of performing experiments specifically designed to extract ANCs for these systems.Comment: 15 pages, 12 figures, Phys. Rev. C (in press

    Inferring Unusual Crowd Events From Mobile Phone Call Detail Records

    Full text link
    The pervasiveness and availability of mobile phone data offer the opportunity of discovering usable knowledge about crowd behaviors in urban environments. Cities can leverage such knowledge in order to provide better services (e.g., public transport planning, optimized resource allocation) and safer cities. Call Detail Record (CDR) data represents a practical data source to detect and monitor unusual events considering the high level of mobile phone penetration, compared with GPS equipped and open devices. In this paper, we provide a methodology that is able to detect unusual events from CDR data that typically has low accuracy in terms of space and time resolution. Moreover, we introduce a concept of unusual event that involves a large amount of people who expose an unusual mobility behavior. Our careful consideration of the issues that come from coarse-grained CDR data ultimately leads to a completely general framework that can detect unusual crowd events from CDR data effectively and efficiently. Through extensive experiments on real-world CDR data for a large city in Africa, we demonstrate that our method can detect unusual events with 16% higher recall and over 10 times higher precision, compared to state-of-the-art methods. We implement a visual analytics prototype system to help end users analyze detected unusual crowd events to best suit different application scenarios. To the best of our knowledge, this is the first work on the detection of unusual events from CDR data with considerations of its temporal and spatial sparseness and distinction between user unusual activities and daily routines.Comment: 18 pages, 6 figure

    Tramp Ship Scheduling Problem with Berth Allocation Considerations and Time-dependent Constraints

    Full text link
    This work presents a model for the Tramp Ship Scheduling problem including berth allocation considerations, motivated by a real case of a shipping company. The aim is to determine the travel schedule for each vessel considering multiple docking and multiple time windows at the berths. This work is innovative due to the consideration of both spatial and temporal attributes during the scheduling process. The resulting model is formulated as a mixed-integer linear programming problem, and a heuristic method to deal with multiple vessel schedules is also presented. Numerical experimentation is performed to highlight the benefits of the proposed approach and the applicability of the heuristic. Conclusions and recommendations for further research are provided.Comment: 16 pages, 3 figures, 5 tables, proceedings paper of Mexican International Conference on Artificial Intelligence (MICAI) 201
    • …
    corecore