22,114 research outputs found
New Results for Diffusion in Lorentz Lattice Gas Cellular Automata
New calculations to over ten million time steps have revealed a more complex
diffusive behavior than previously reported, of a point particle on a square
and triangular lattice randomly occupied by mirror or rotator scatterers. For
the square lattice fully occupied by mirrors where extended closed particle
orbits occur, anomalous diffusion was still found. However, for a not fully
occupied lattice the super diffusion, first noticed by Owczarek and Prellberg
for a particular concentration, obtains for all concentrations. For the square
lattice occupied by rotators and the triangular lattice occupied by mirrors or
rotators, an absence of diffusion (trapping) was found for all concentrations,
except on critical lines, where anomalous diffusion (extended closed orbits)
occurs and hyperscaling holds for all closed orbits with {\em universal}
exponents and . Only one point on these critical lines can be related to a
corresponding percolation problem. The questions arise therefore whether the
other critical points can be mapped onto a new percolation-like problem, and of
the dynamical significance of hyperscaling.Comment: 52 pages, including 18 figures on the last 22 pages, email:
[email protected]
Energetics and dynamics of H adsorbed in a nanoporous material at low temperature
Molecular hydrogen adsorption in a nanoporous metal organic framework
structure (MOF-74) was studied via van der Waals density-functional
calculations. The primary and secondary binding sites for H were confirmed.
The low-lying rotational and translational energy levels were calculated, based
on the orientation and position dependent potential energy surface at the two
binding sites. A consistent picture is obtained between the calculated
rotational-translational transitions for different H loadings and those
measured by inelastic neutron scattering exciting the singlet to triplet (para
to ortho) transition in H. The H binding energy after zero point energy
correction due to the rotational and translational motions is predicted to be
100 meV in good agreement with the experimental value of 90 meV.Comment: 5 pagers, 4 figures. added reference
Identification of a functional genetic variant driving racially dimorphic platelet gene expression of the thrombin receptor regulator, PCTP.
Platelet activation in response to stimulation of the Protease Activated Receptor 4 (PAR4) receptor differs by race. One factor that contributes to this difference is the expression level of Phosphatidylcholine Transfer Protein (PCTP), a regulator of platelet PAR4 function. We have conducted an expression Quantitative Trait Locus (eQTL) analysis that identifies single nucleotide polymorphisms (SNPs) linked to the expression level of platelet genes. This analysis revealed 26 SNPs associated with the expression level of PCTP at genome-wide significance (p \u3c 5×10(-8)). Using annotation from ENCODE and other public data we prioritised one of these SNPs, rs2912553, for functional testing. The allelic frequency of rs2912553 is racially-dimorphic, in concordance with the racially differential expression of PCTP. Reporter gene assays confirmed that the single nucleotide change caused by rs2912553 altered the transcriptional potency of the surrounding genomic locus. Electromobility shift assays, luciferase assays, and overexpression studies indicated a role for the megakaryocytic transcription factor GATA1. In summary, we have integrated multi-omic data to identify and functionalise an eQTL. This, along with the previously described relationship between PCTP and PAR4 function, allows us to characterise a genotype-phenotype relationship through the mechanism of gene expression
Anisotropy Reversal of the Upper Critical Field at Low Temperatures and Spin-Locked Superconductivity in K2Cr3As3
We report the first measurements of the anisotropic upper critical field
for KCrAs single crystals up to 60 T and K. Our results show that the upper critical field parallel to the Cr
chains, , exhibits a paramagnetically-limited behavior,
whereas the shape of the curve (perpendicular to the Cr
chains) has no evidence of paramagnetic effects. As a result, the curves
and cross at K, so that
the anisotropy parameter
increases from near to at 0.6 K. This behavior of is inconsistent with triplet
superconductivity but suggests a form of singlet superconductivity with the
electron spins locked onto the direction of Cr chains
Single grain heating due to inelastic cotunneling
We study heating effects of a single metallic quantum dot weakly coupled to
two leads. The dominant mechanism for heating at low temperatures is due to
inelastic electron cotunneling processes. We calculate the grain temperature
profile as a function of grain parameters, bias voltage, and time and show that
for nanoscale size grains the heating effects are pronounced and easily
measurable in experiments.Comment: 4 pages, 3 figures, revtex4, extended and corrected versio
Conductor-backed coplanar waveguide resonators of Y-Ba-Cu-O and Tl-Ba-Ca-Cu-O on LaAlO3
Conductor-backed coplanar waveguide (CBCPW) resonators operating at 10.8 GHz have been fabricated from Tl-Ba-Ca-O (TBCCO) and Y-Ba-Cu-O (YBCO) thin films on LaAlO3. The resonators consist of a coplanar waveguide (CPW) patterned on the superconducting film side of the LaAlO3 substrate with a gold ground plane coated on the opposite side. These resonators were tested in the temperature range from 14 to 106 K. At 77 K, the best of our TBCCO and YBCO resonators have an unloaded quality factor (Qo) 7 and 4 times, respectively, larger than that of a similar all-gold resonator. In this study, the Qo's of the TBCCO resonators were larger than those of their YBCO counterparts throughout the aforementioned temperature range
Squamous Cell Carcinoma in a Heel Ulcer in a Patient With Diabetes
A technique for measuring B-H curves of grain-oriented silicon steel along arbitrary directions has been developed. As the control of waveform is not necessary in this technique, it is possible to measure B-H curves up to high flux densities which are required for calculating flux distribution using the finite element method</p
Spin constrained orbital angular momentum control in high-harmonic generation
The interplay between spin and orbital angular momentum in the up-conversion
process allows us to control the macroscopic wave front of high harmonics by
manipulating the microscopic polarizations of the driving field. We demonstrate
control of orbital angular momentum in high harmonic generation from both solid
and gas phase targets using the selection rules of spin angular momentum. The
gas phase harmonics extend the control of angular momentum to
extreme-ultraviolet wavelength. We also propose a bi-color scheme to produce
spectrally separated extreme-ultraviolet radiation carrying orbital angular
momentum
- …