95,957 research outputs found

    Laser Mode Bifurcations Induced by PT\mathcal{PT}-Breaking Exceptional Points

    Full text link
    A laser consisting of two independently-pumped resonators can exhibit mode bifurcations that evolve out of the exceptional points (EPs) of the linear system at threshold. The EPs are non-Hermitian degeneracies occurring at the parity/time-reversal (PT\mathcal{PT}) symmetry breaking points of the threshold system. Above threshold, the EPs become bifurcations of the nonlinear zero-detuned laser modes, which can be most easily observed by making the gain saturation intensities in the two resonators substantially different. Small pump variations can then switch abruptly between different laser behaviors, e.g. between below-threshold and PT\mathcal{PT}-broken single-mode operation.Comment: 4 pages, 3 figure

    Turbulent mixing of a slightly supercritical Van der Waals fluid at Low-Mach number

    Get PDF
    Supercritical fluids near the critical point are characterized by liquid-like densities and gas-like transport properties. These features are purposely exploited in different contexts ranging from natural products extraction/fractionation to aerospace propulsion. Large part of studies concerns this last context, focusing on the dynamics of supercritical fluids at high Mach number where compressibility and thermodynamics strictly interact. Despite the widespread use also at low Mach number, the turbulent mixing properties of slightly supercritical fluids have still not investigated in detail in this regime. This topic is addressed here by dealing with Direct Numerical Simulations (DNS) of a coaxial jet of a slightly supercritical Van der Waals fluid. Since acoustic effects are irrelevant in the Low Mach number conditions found in many industrial applications, the numerical model is based on a suitable low-Mach number expansion of the governing equation. According to experimental observations, the weakly supercritical regime is characterized by the formation of finger-like structures-- the so-called ligaments --in the shear layers separating the two streams. The mechanism of ligament formation at vanishing Mach number is extracted from the simulations and a detailed statistical characterization is provided. Ligaments always form whenever a high density contrast occurs, independently of real or perfect gas behaviors. The difference between real and perfect gas conditions is found in the ligament small-scale structure. More intense density gradients and thinner interfaces characterize the near critical fluid in comparison with the smoother behavior of the perfect gas. A phenomenological interpretation is here provided on the basis of the real gas thermodynamics properties.Comment: Published on Physics of Fluid

    Experimental probing of the anisotropy of the empty p states near the Fermi level in MgB2

    Full text link
    We have studied the Boron K-edge in the superconductor MgB2 by electron energy loss spectroscopy (EELS) and experimentally resolved the empty p states at the Fermi level that have previously been observed within an energy window of 0.8eV by soft x-ray absorption spectroscopy. Using angular resolved EELS, we find that these states at the immediate edge onset have pxy character in agreement with predictions from first-principle electronic structure calculations.Comment: 15 pages, 5 figure

    Semantic web-based document: editing and browsing in AktiveDoc

    Get PDF
    This paper presents a tool for supporting sharing and reuse of knowledge in document creation (writing) and use (reading). Semantic Web technologies are used to support the production of ontology based annotations while the document is written. Free text annotations (comments) can be added to integrate the knowledge in the document. In addition the tool uses external services (e.g. a Semantic Web harvester) to propose relevant content to writing user, enabling easy knowledge reuse. Similar facilities are provided for readers when their task does not coincide with the author’s one. The tool is specifically designed for Knowledge Management in organisations. In this paper we present and discuss how Semantic Web technologies are designed and integrated in the system

    Transport in gapped bilayer graphene: the role of potential fluctuations

    Full text link
    We employ a dual-gated geometry to control the band gap \Delta in bilayer graphene and study the temperature dependence of the resistance at the charge neutrality point, RNP(T), from 220 to 1.5 K. Above 5 K, RNP(T) is dominated by two thermally activated processes in different temperature regimes and exhibits exp(T3/T)^{1/3} below 5 K. We develop a simple model to account for the experimental observations, which highlights the crucial role of localized states produced by potential fluctuations. The high temperature conduction is attributed to thermal activation to the mobility edge. The activation energy approaches \Delta /2 at large band gap. At intermediate and low temperatures, the dominant conduction mechanisms are nearest neighbor hopping and variable-range hopping through localized states. Our systematic study provides a coherent understanding of transport in gapped bilayer graphene.Comment: to appear in Physical Review B: Rapid Com
    • …
    corecore