161,237 research outputs found

    Comparative study of Steel-FRP, FRP and steel reinforced coral concrete beams in their flexural performance

    Get PDF
    In this paper, a comparative study of Carbon Fiber Reinforced Polymer (CFRP) Bar and Steel-Carbon Fiber Composite Bar (SCFCB) reinforced coral concrete beams are made through a series experimental tests and theoretical analysis. The flexural capacity, crack development and failure modes of CFRP and SCFCB reinforced coral concrete were investigated in detail. They are also compared to ordinary steel reinforced coral concrete beams. The results show that under the same condition of reinforcement ratio, the SCFCB reinforced beam exhibits better performance than those of the CFRP reinforced beams, and its stiffness is slightly lower than that of the steel reinforced beam. Under the same load condition, the crack width of the SCFCB beam is between the steel reinforced beam and the CFRP bar reinforced beam. Before the steel core yields, the crack growth rate of SCFCB beam is similar to the steel reinforced beam. SCFCB has a higher strength utilization rate, about 70% -85% of its ultimate strength. The current design guidance was also examined based on the test results. It was found that the existing design specifications for FRP reinforced normal concrete is not suitable for SCFCB reinforced coral concrete structures

    Signature of a spin-up magnetar from multi-band afterglow rebrightening of GRB 100814A

    Full text link
    In recent years, more and more gamma-ray bursts with late rebrightenings in multi-band afterglows unveil the late-time activities of the central engines. GRB 100814A is a special one among the well-sampled events, with complex temporal and spectral evolution. The single power-law shallow decay index of the optical light curve observed by GROND between 640 s and 10 ks is αopt=0.57±0.02\alpha_{\rm opt} = 0.57 \pm 0.02, which apparently conflicts with the simple external shock model expectation. Especially, there is a remarkable rebrightening in the optical to near infrared bands at late time, challenging the external shock model with synchrotron emission coming from the interaction of the blast wave with the surrounding interstellar medium. In this paper, we invoke a magnetar with spin evolution to explain the complex multi-band afterglow emission of GRB 100814A. The initial shallow decay phase in optical bands and the plateau in X-ray can be explained as due to energy injection from a spin-down magnetar. At late time, with the falling of materials from the fall-back disk onto the central object of the burster, angular momentum of the accreted materials is transferred to the magnetar, which leads to a spin-up process. As a result, the magnetic dipole radiation luminosity will increase, resulting in the significant rebrightening of the optical afterglow. It is shown that the observed multi-band afterglow emission can be well reproduced by the model.Comment: 14 pages, 2 figures, accepted by The Astrophysical Journa

    A Morphological Approach to the Pulsed Emission from Soft Gamma Repeaters

    Get PDF
    We present a geometrical methodology to interpret the periodical light curves of Soft Gamma Repeaters based on the magnetar model and the numerical arithmetic of the three-dimensional magnetosphere model for the young pulsars. The hot plasma released by the star quake is trapped in the magnetosphere and photons are emitted tangent to the local magnetic field lines. The variety of radiation morphologies in the burst tails and the persistent stages could be well explained by the trapped fireballs on different sites inside the closed field lines. Furthermore, our numerical results suggests that the pulse profile evolution of SGR 1806-20 during the 27 December 2004 giant flare is due to a lateral drift of the emitting region in the magnetosphere.Comment: 7 figures, accepted by Ap
    corecore