5,285 research outputs found

    Kaluza-Klein Higher Derivative Induced Gravity

    Get PDF
    The existence and stability analysis of an inflationary solution in a D+4D+4-dimensional anisotropic induced gravity is presented in this paper. Nontrivial conditions in the field equations are shown to be compatible with a cosmological model in which the 4-dimension external space evolves inflationary, while, the D-dimension internal one is static. In particular, only two additional constraints on the coupling constants are derived from the abundant field equations and perturbation equations. In addition, a compact formula for the non-redundant 4+D dimensional Friedmann equation is also derived for convenience. Possible implications are also discussed in this paper.Comment: 13 pages, typos/errors corrected, three additional appendices adde

    Ground-state properties of the spin-1/2 antiferromagnetic Heisenberg model on the triangular lattice: A variational study based on entangled-plaquette states

    Full text link
    We study, on the basis of the general entangled-plaquette variational ansatz, the ground-state properties of the spin-1/2 antiferromagnetic Heisenberg model on the triangular lattice. Our numerical estimates are in good agreement with available exact results and comparable, for large system sizes, to those computed via the best alternative numerical approaches, or by means of variational schemes based on specific (i.e., incorporating problem dependent terms) trial wave functions. The extrapolation to the thermodynamic limit of our results for lattices comprising up to N=324 spins yields an upper bound of the ground-state energy per site (in units of the exchange coupling) of 0.5458(2)-0.5458(2) [0.4074(1)-0.4074(1) for the XX model], while the estimated infinite-lattice order parameter is 0.3178(5)0.3178(5) (i.e., approximately 64% of the classical value).Comment: 8 pages, 3 tables, 2 figure

    Kaluza-Klein Induced Gravity Inflation

    Full text link
    A D-dimensional induced gravity theory is studied carefully in a 4+(D4)4 + (D-4) dimensional Friedmann-Robertson-Walker space-time. We try to extract information of the symmetry breaking potential in search of an inflationary solution with non-expanding internal-space. We find that the induced gravity model imposes strong constraints on the form of symmetry breaking potential in order to generate an acceptable inflationary universe. These constraints are analyzed carefully in this paper.Comment: 10 pages, title changed, corrected some typos, two additional comments adde

    Inflationary Universe in Higher Derivative Induced Gravity

    Get PDF
    In an induced-gravity model, the stability condition of an inflationary slow-rollover solution is shown to be ϕ0ϕ0V(ϕ0)=4V(ϕ0)\phi_0 \partial_{\phi_0}V(\phi_0)=4V(\phi_0). The presence of higher derivative terms will, however, act against the stability of this expanding solution unless further constraints on the field parameters are imposed. We find that these models will acquire a non-vanishing cosmological constant at the end of inflation. Some models are analyzed for their implication to the early universe.Comment: 6 pages, two typos correcte

    Production of ZZ Boson Pairs at Photon Linear Colliders

    Full text link
    The ZZZZ pair production rate in high energy γγ\gamma \gamma collisions is evaluated with photons from laser backscattering. We find that searching for the Standard Model Higgs boson with a mass up to, or slightly larger than, 400 GeV via the ZZZZ final state is possible via photon fusion with backscattered laser photons at a linear e+ee^+e^- collider with energies in the range 600 GeV <se+e<< \sqrt{s_{e^+e^-}} < 1000 GeV.Comment: 18 pages in REVTEX, Figures available upon request, DOE-ER40757-024,CPP-93-24 and FSU-HEP-93080

    Insight into the Cycling Behaviour of Metal Anodes, Enabled by X-ray Tomography and Mathematical Modelling

    Get PDF
    This work tackles the methodological challenge of rationalizing symmetric-cell cycling data from a materials-science perspective, through experiment replication, mathematical modelling, and tomographic imaging. Specifically, we address Zn electrode cycling in alkaline electrolyte with and without adding tetrabutylammonium bromide (TBAB). This additive is known from literature, but its practical impact is jeopardized by lack of in-depth understanding of its behaviour. Electrochemical testing was carried out at practically relevant current densities and the effect of variations of operating conditions was taken into account. The physical chemistry underlying cell potential profiles, has been modelled mathematically, accounting for: electrokinetics, mass-transport, electrode shape change and passivation. In particular, we disclosed an unexpected joint effect of TBAB and current density on passivation time: tomography allowed to rationalise this behaviour in terms of precipitate morphology

    Simulation of Dimensionally Reduced SYM-Chern-Simons Theory

    Get PDF
    A supersymmetric formulation of a three-dimensional SYM-Chern-Simons theory using light-cone quantization is presented, and the supercharges are calculated in light-cone gauge. The theory is dimensionally reduced by requiring all fields to be independent of the transverse dimension. The result is a non-trivial two-dimensional supersymmetric theory with an adjoint scalar and an adjoint fermion. We perform a numerical simulation of this SYM-Chern-Simons theory in 1+1 dimensions using SDLCQ (Supersymmetric Discrete Light-Cone Quantization). We find that the character of the bound states of this theory is very different from previously considered two-dimensional supersymmetric gauge theories. The low-energy bound states of this theory are very ``QCD-like.'' The wave functions of some of the low mass states have a striking valence structure. We present the valence and sea parton structure functions of these states. In addition, we identify BPS-like states which are almost independent of the coupling. Their masses are proportional to their parton number in the large-coupling limit.Comment: 18pp. 7 figures, uses REVTe

    Stability of a vacuum nonsingular black hole

    Full text link
    This is the first of series of papers in which we investigate stability of the spherically symmetric space-time with de Sitter center. Geometry, asymptotically Schwarzschild for large rr and asymptotically de Sitter as r0r\to 0, describes a vacuum nonsingular black hole for mmcrm\geq m_{cr} and particle-like self-gravitating structure for m<mcrm < m_{cr} where a critical value mcrm_{cr} depends on the scale of the symmetry restoration to de Sitter group in the origin. In this paper we address the question of stability of a vacuum non-singular black hole with de Sitter center to external perturbations. We specify first two types of geometries with and without changes of topology. Then we derive the general equations for an arbitrary density profile and show that in the whole range of the mass parameter mm objects described by geometries with de Sitter center remain stable under axial perturbations. In the case of the polar perturbations we find criteria of stability and study in detail the case of the density profile ρ(r)=ρ0er3/r02rg\rho(r)=\rho_0 e^{-r^3/r_0^2 r_g} where ρ0\rho_0 is the density of de Sitter vacuum at the center, r0r_0 is de Sitter radius and rgr_g is the Schwarzschild radius.Comment: 18 pages, 8 figures, submitted to "Classical and Quantum Gravity

    Background field formalism and construction of effective action for N=2, d=3 supersymmetric gauge theories

    Full text link
    We review the background field method for three-dimensional Yang-Mills and Chern-Simons models in N=2 superspace. Superfield proper time (heat kernel) techniques are developed and exact expressions of heat kernels for constant backgrounds are presented. The background field method and heat kernel techniques are applied for evaluating the low-energy effective actions in N=2 supersymmetric Yang-Mills and Chern-Simons models as well as in N=4 and N=8 SYM theories.Comment: 1+30 pages, dedicated to the 60 year Jubilee of Professor D.I. Kazakov; references added. arXiv admin note: substantial text overlap with arXiv:1010.496

    Hyperon weak radiative decays in chiral perturbation theory

    Get PDF
    We investigate the leading-order amplitudes for weak radiative decays of hyperons in chiral perturbation theory. We consistently include contributions from the next-to-leading order weak-interaction Lagrangian. It is shown that due to these terms Hara's theorem is violated. The data for the decays of charged hyperons can be easily accounted for. However, at this order in the chiral expansion, the four amplitudes for the decays of neutral hyperons satisfy relations which are in disagreement with the data. The asymmetry parameters for all the decays can not be accounted for without higher-order terms. We shortly comment on the effect of the 27-plet part of the weak interaction.Comment: 8 pages of REVTeX and using macro-package "feynman.tex" (available at http://xxx.lanl.gov/ftp/hep-ph/papers/macros) for the 2 figure
    corecore