44,217 research outputs found

    Contributions to planetary meteorology Final report

    Get PDF
    Atmospheric circulation and climatology of Venus and Mar

    Ideal strengths and bonding properties of PuO2 under tension

    Full text link
    We perform a first-principles computational tensile test on PuO2_{2} based on density-functional theory within local density approximation (LDA)+\emph{U} formalism to investigate its structural, mechanical, magnetic, and intrinsic bonding properties in the four representative directions: [001], [100], [110], and [111]. The stress-strain relations show that the ideal tensile strengths in the four directions are 81.2, 80.5, 28.3, and 16.8 GPa at strains of 0.36, 0.36, 0.22, and 0.18, respectively. The [001] and [100] directions are prominently stronger than other two directions since that more Pu-O bonds participate in the pulling process. Through charge and density of states analysis along the [001] direction, we find that the strong mixed ionic/covalent character of Pu-O bond is weakened by tensile strain and PuO2_{2} will exhibit an insulator-to-metal transition after tensile stress exceeds about 79 GPa.Comment: 11 pages, 6 figure

    Interaction driven metal-insulator transition in strained graphene

    Full text link
    The question of whether electron-electron interactions can drive a metal to insulator transition in graphene under realistic experimental conditions is addressed. Using three representative methods to calculate the effective long-range Coulomb interaction between π\pi-electrons in graphene and solving for the ground state using quantum Monte Carlo methods, we argue that without strain, graphene remains metallic and changing the substrate from SiO2_2 to suspended samples hardly makes any difference. In contrast, applying a rather large -- but experimentally realistic -- uniform and isotropic strain of about 15%15\% seems to be a promising route to making graphene an antiferromagnetic Mott insulator.Comment: Updated version: 6 pages, 3 figure

    The role of electron-electron interactions in two-dimensional Dirac fermions

    Full text link
    The role of electron-electron interactions on two-dimensional Dirac fermions remains enigmatic. Using a combination of nonperturbative numerical and analytical techniques that incorporate both the contact and long-range parts of the Coulomb interaction, we identify the two previously discussed regimes: a Gross-Neveu transition to a strongly correlated Mott insulator, and a semi-metallic state with a logarithmically diverging Fermi velocity accurately described by the random phase approximation. Most interestingly, experimental realizations of Dirac fermions span the crossover between these two regimes providing the physical mechanism that masks this velocity divergence. We explain several long-standing mysteries including why the observed Fermi velocity in graphene is consistently about 20 percent larger than the best values calculated using ab initio and why graphene on different substrates show different behavior.Comment: 11 pages, 4 figure

    Integration of gradient least mean squares in bidirectional long short-term (LSTM) memory networks for metallurgical bearing ball fault diagnosis

    Get PDF
    This paper introduces a novel diagnostic approach for bearing ball failures: a synergistic implementation of a bidirectional Long Short-Term Memory (LSTM) network, empowered by Gradient Minimum Mean Square. This method leverages deep analysis of operational data from bearings, enabling the precise identification of incipient bearing ball failures at early stages, thus markedly improving prediction accuracy. Our empirical results underscore the superior performance of this composite methodology in accurately detecting a spectrum of five mechanical bearing ball failure types, achieving a substantial enhancement in diagnostic precision

    Topological properties and fractal analysis of recurrence network constructed from fractional Brownian motions

    Full text link
    Many studies have shown that we can gain additional information on time series by investigating their accompanying complex networks. In this work, we investigate the fundamental topological and fractal properties of recurrence networks constructed from fractional Brownian motions (FBMs). First, our results indicate that the constructed recurrence networks have exponential degree distributions; the relationship between HH and canberepresentedbyacubicpolynomialfunction.Wenextfocusonthemotifrankdistributionofrecurrencenetworks,sothatwecanbetterunderstandnetworksatthelocalstructurelevel.Wefindtheinterestingsuperfamilyphenomenon,i.e.therecurrencenetworkswiththesamemotifrankpatternbeinggroupedintotwosuperfamilies.Last,wenumericallyanalyzethefractalandmultifractalpropertiesofrecurrencenetworks.Wefindthattheaveragefractaldimension can be represented by a cubic polynomial function. We next focus on the motif rank distribution of recurrence networks, so that we can better understand networks at the local structure level. We find the interesting superfamily phenomenon, i.e. the recurrence networks with the same motif rank pattern being grouped into two superfamilies. Last, we numerically analyze the fractal and multifractal properties of recurrence networks. We find that the average fractal dimension of recurrence networks decreases with the Hurst index HH of the associated FBMs, and their dependence approximately satisfies the linear formula 2H \approx 2 - H. Moreover, our numerical results of multifractal analysis show that the multifractality exists in these recurrence networks, and the multifractality of these networks becomes stronger at first and then weaker when the Hurst index of the associated time series becomes larger from 0.4 to 0.95. In particular, the recurrence network with the Hurst index H=0.5H=0.5 possess the strongest multifractality. In addition, the dependence relationships of the average information dimension andtheaveragecorrelationdimension and the average correlation dimension on the Hurst index HH can also be fitted well with linear functions. Our results strongly suggest that the recurrence network inherits the basic characteristic and the fractal nature of the associated FBM series.Comment: 25 pages, 1 table, 15 figures. accepted by Phys. Rev.

    Possible approach to improve sensitivity of a Michelson interferometer

    Full text link
    We propose a possible approach to achieve an 1/N sensitivity of Michelson interferometer by using a properly designed random phase modulation. Different from other approaches, the sensitivity improvement does not depend on increasing optical powers or utilizing the quantum properties of light. Moreover the requirements for optical losses and the quantum efficiencies of photodetection systems might be lower than the quantum approaches and the sensitivity improvement is frequency independent in all detection band.Comment: 8 pages, 3 figures, new versio

    Experimental observation of an enhanced anisotropic magnetoresistance in non-local configuration

    Full text link
    We compare non-local magnetoresistance measurements in multi-terminal Ni nanostructures with corresponding local experiments. In both configurations, the measured voltages show the characteristic features of anisotropic magnetoresistance (AMR). However, the magnitude of the non-local AMR signal is up to one order of magnitude larger than its local counterpart. Moreover, the non-local AMR increases with increasing degree of non-locality, i.e., with the separation between the region of the main current flow and the voltage measurement region. All experimental observations can be consistently modeled in terms of current spreading in a non-isotropic conductor. Our results show that current spreading can significantly enhance the magnetoresistance signal in non-local experiments
    corecore