47,326 research outputs found

    About the chemical composition of delta Scuti - the prototype of the class of pulsating variables

    Full text link
    We present chemical abundances in the photosphere of δ\delta Scuti -- the prototype of the class of pulsating variables -- determined from the analysis of a spectrum obtained at Terskol observatory 2 meter telescope with resolution R=52,000R=52,000, signal to noise ratio 250. VLT and IUE spectra were used also . Abundance pattern of \dsct consists of 49 chemical elements. The abundances of Be, P, Ge, Nb, Mo, Ru, Er, Tb, Dy, Tm, Yb, Lu, Hf, Ta, Os, Pt, Th were not investigated previously. The lines of third spectra of Pr and Nd also are investigated for the first time. The abundances of heavy elements show the overabundances with respect to the Sun up to 1 dex. The abundance pattern of \dsct is similar to that of Am-Fm stars.Comment: 8 pages, 2 figures, subm. to Proc. of IAU Symp. 22

    Imaging of fuel mixture fraction oscillations in a driven system using acetone PLIF

    Get PDF
    Measurements of fuel mixture fraction are made for a jet flame in an acoustic chamber. Acoustic forcing creates a spatially-uniform, temporally-varying pressure field which results in oscillatory behavior in the flame . Forcing is at 22,27, 32, 37, and 55 Hz. To asses the oscillatory behavior, previous work included chemiluminescence, OH PUF, nitric oxide PUF imaging, and fuel mixture fraction measurements by infrared laser absorption. While these results illuminated what was happening to the flame chemistry, they did not provide a complete explanation as to why these things were happening. In this work, the fuel mixture fraction is measured through PUF of acetone, which is introduced into the fuel stream as a marker. This technique enables a high degree of spatial resolution of fuel/air mixture value. Both non-reacting and reacting cases were measured and comparisons are drawn with the results from the previous work. It is found that structure in the mixture fraction oscillations is a major contributor to the magnitude of the flame oscillations

    Spatial Organization in the Reaction A + B --> inert for Particles with a Drift

    Full text link
    We describe the spatial structure of particles in the (one dimensional) two-species annihilation reaction A + B --> 0, where both species have a uniform drift in the same direction and like species have a hard core exclusion. For the case of equal initial concentration, at long times, there are three relevant length scales: the typical distance between similar (neighboring) particles, the typical distance between dissimilar (neighboring) particles, and the typical size of a cluster of one type of particles. These length scales are found to be generically different than that found for particles without a drift.Comment: 10 pp of gzipped uuencoded postscrip

    Neutrino Background Flux from Sources of Ultrahigh-Energy Cosmic-Ray Nuclei

    Get PDF
    Motivated by Pierre Auger Observatory results favoring a heavy nuclear composition for ultrahigh-energy (UHE) cosmic rays, we investigate implications for the cumulative neutrino background. The requirement that nuclei not be photodisintegrated constrains their interactions in sources, therefore limiting neutrino production via photomeson interactions. Assuming a dNCR/dECRECR2dN_{\rm CR}/dE_{\rm CR} \propto E_{\rm CR}^{-2} injection spectrum and photodisintegration via the giant dipole resonance, the background flux of neutrinos is lower than Eν2Φν109GeVcm2s1sr1E_\nu^2 \Phi_\nu \sim {10}^{-9} {\rm GeV} {\rm cm}^{-2} {\rm s}^{-1} {\rm sr}^{-1} if UHE nuclei ubiquitously survive in their sources. This is smaller than the analogous Waxman-Bahcall flux for UHE protons by about one order of magnitude, and is below the projected IceCube sensitivity. If IceCube detects a neutrino background, it could be due to other sources, e.g., hadronuclear interactions of lower-energy cosmic rays; if it does not, this supports our strong restrictions on the properties of sources of UHE nuclei.Comment: 7 pages, 3 figure

    Magnetic Interaction in the Geometrically Frustrated Triangular Lattice Antiferromagnet CuFeO2\rm CuFeO_2

    Full text link
    The spin wave excitations of the geometrically frustrated triangular lattice antiferromagnet (TLA) CuFeO2\rm CuFeO_2 have been measured using high resolution inelastic neutron scattering. Antiferromagnetic interactions up to third nearest neighbors in the ab plane (J_1, J_2, J_3, with J2/J10.44J_2/J_1 \approx 0.44 and J3/J10.57J_3/J_1 \approx 0.57), as well as out-of-plane coupling (J_z, with Jz/J10.29J_z/J_1 \approx 0.29) are required to describe the spin wave dispersion relations, indicating a three dimensional character of the magnetic interactions. Two energy dips in the spin wave dispersion occur at the incommensurate wavevectors associated with multiferroic phase, and can be interpreted as dynamic precursors to the magnetoelectric behavior in this system.Comment: 4 pages, 4 figures, published in Phys. Rev. Let

    Strong solutions of the thin film equation in spherical geometry

    Full text link
    We study existence and long-time behaviour of strong solutions for the thin film equation using a priori estimates in a weighted Sobolev space. This equation can be classified as a doubly degenerate fourth-order parabolic and it models coating flow on the outer surface of a sphere. It is shown that the strong solution asymptotically decays to the flat profile

    A Comparison between the Zero Forcing Number and the Strong Metric Dimension of Graphs

    Full text link
    The \emph{zero forcing number}, Z(G)Z(G), of a graph GG is the minimum cardinality of a set SS of black vertices (whereas vertices in V(G)SV(G)-S are colored white) such that V(G)V(G) is turned black after finitely many applications of "the color-change rule": a white vertex is converted black if it is the only white neighbor of a black vertex. The \emph{strong metric dimension}, sdim(G)sdim(G), of a graph GG is the minimum among cardinalities of all strong resolving sets: WV(G)W \subseteq V(G) is a \emph{strong resolving set} of GG if for any u,vV(G)u, v \in V(G), there exists an xWx \in W such that either uu lies on an xvx-v geodesic or vv lies on an xux-u geodesic. In this paper, we prove that Z(G)sdim(G)+3r(G)Z(G) \le sdim(G)+3r(G) for a connected graph GG, where r(G)r(G) is the cycle rank of GG. Further, we prove the sharp bound Z(G)sdim(G)Z(G) \leq sdim(G) when GG is a tree or a unicyclic graph, and we characterize trees TT attaining Z(T)=sdim(T)Z(T)=sdim(T). It is easy to see that sdim(T+e)sdim(T)sdim(T+e)-sdim(T) can be arbitrarily large for a tree TT; we prove that sdim(T+e)sdim(T)2sdim(T+e) \ge sdim(T)-2 and show that the bound is sharp.Comment: 8 pages, 5 figure

    Geometric Origin of CP Violation in an Extra-Dimensional Brane World

    Get PDF
    The fermion mass hierarchy and finding a predictive mechanism of the flavor mixing parameters remain two of the least understood puzzles facing particle physics today. In this work, we demonstrate how the realization of the Dirac algebra in the presence of two extra spatial dimensions leads to complex fermion field profiles in the extra dimensions. Dimensionally reducing to four dimensions leads to complex quark mass matrices in such a fashion that CP violation necessarily follows. We also present the generalization of the Randall-Sundrum scenario to the case of a multi-brane, six-dimensional brane-world and discuss how multi-brane worlds may shed light on the generation index of the SM matter content.Comment: 24 pages, 1 figure; references adde
    corecore