111,521 research outputs found
Class decomposition for GA-based classifier agents – A Pitt approach
Incremental learning has been widely addressed in the machine learning literature to cope with learning tasks where the learning environment is ever changing or training samples become available over time. However, most research work explores incremental learning with statistical algorithms or neural networks, rather than evolutionary algorithms. The work in this paper employs genetic algorithms (GAs) as basic learning algorithms for incremental learning within one or more classifier agents in a multi-agent environment. Four new approaches with different initialization schemes are proposed. They keep the old solutions and use an “integration” operation to integrate them with new elements to accommodate new attributes, while biased mutation and crossover operations are adopted to further evolve a reinforced solution. The simulation results on benchmark classification data sets show that the proposed approaches can deal with the arrival of new input attributes and integrate them with the original input space. It is also shown that the proposed approaches can be successfully used for incremental learning and improve classification rates as compared to the retraining GA. Possible applications for continuous incremental training and feature selection are also discussed
An incremental approach to genetic algorithms based classification
Incremental learning has been widely addressed in the machine learning literature to cope with learning tasks where the learning environment is ever changing or training samples become available over time. However, most research work explores incremental learning with statistical algorithms or neural networks, rather than evolutionary algorithms. The work in this paper employs genetic algorithms (GAs) as basic learning algorithms for incremental learning within one or more classifier agents in a multi-agent environment. Four new approaches with different initialization schemes are proposed. They keep the old solutions and use an “integration” operation to integrate them with new elements to accommodate new attributes, while biased mutation and crossover operations are adopted to further evolve a reinforced solution. The simulation results on benchmark classification data sets show that the proposed approaches can deal with the arrival of new input attributes and integrate them with the original input space. It is also shown that the proposed approaches can be successfully used for incremental learning and improve classification rates as compared to the retraining GA. Possible applications for continuous incremental training and feature selection are also discussed
Ontology acquisition and exchange of evolutionary product-brokering agents
Agent-based electronic commerce (e-commerce) has been booming with the development of the Internet and agent technologies. However, little effort has been devoted to exploring the learning and evolving capabilities of software agents. This paper addresses issues of evolving software agents in e-commerce applications. An agent structure with evolution features is proposed with a focus on internal hierarchical knowledge. We argue that knowledge base of agents should be the cornerstone for their evolution capabilities, and agents can enhance their knowledge bases by exchanging knowledge with other agents. In this paper, product ontology is chosen as an instance of knowledge base. We propose a new approach to facilitate ontology exchange among e-commerce agents. The ontology exchange model and its formalities are elaborated. Product-brokering agents have been designed and implemented, which accomplish the ontology exchange process from request to integration
Cooperative co-evolution of GA-based classifiers based on input increments
Genetic algorithms (GAs) have been widely used as soft computing techniques in various
applications, while cooperative co-evolution algorithms were proposed in the literature to improve the
performance of basic GAs. In this paper, a new cooperative co-evolution algorithm, namely ECCGA, is
proposed in the application domain of pattern classification. Concurrent local and global evolution and
conclusive global evolution are proposed to improve further the classification performance. Different
approaches of ECCGA are evaluated on benchmark classification data sets, and the results show that
ECCGA can achieve better performance than the cooperative co-evolution genetic algorithm and normal GA.
Some analysis and discussions on ECCGA and possible improvement are also presented
On the convergence of autonomous agent communities
This is the post-print version of the final published paper that is available from the link below. Copyright @ 2010 IOS Press and the authors.Community is a common phenomenon in natural ecosystems, human societies as well as artificial multi-agent systems such as those in web and Internet based applications. In many self-organizing systems, communities are formed evolutionarily in a decentralized way through agents' autonomous behavior. This paper systematically investigates the properties of a variety of the self-organizing agent community systems by a formal qualitative approach and a quantitative experimental approach. The qualitative formal study by applying formal specification in SLABS and Scenario Calculus has proven that mature and optimal communities always form and become stable when agents behave based on the collective knowledge of the communities, whereas community formation does not always reach maturity and optimality if agents behave solely based on individual knowledge, and the communities are not always stable even if such a formation is achieved. The quantitative experimental study by simulation has shown that the convergence time of agent communities depends on several parameters of the system in certain complicated patterns, including the number of agents, the number of community organizers, the number of knowledge categories, and the size of the knowledge in each category
Joint Dynamic Radio Resource Allocation and Mobility Load Balancing in 3GPP LTE Multi-Cell Network
Load imbalance, together with inefficient utilization of system resource, constitute major factors responsible for poor overall performance in Long Term Evolution (LTE) network. In this paper, a novel scheme of joint dynamic resource allocation and load balancing is proposed to achieve a balanced performance improvement in 3rd Generation Partnership Project (3GPP) LTE Self-Organizing Networks (SON). The new method which aims at maximizing network resource efficiency subject to inter-cell interference and intra-cell resource constraints is implemented in two steps. In the first step, an efficient resource allocation, including user scheduling and power assignment, is conducted in a distributed manner to serve as many users in the whole network as possible. In the second step, based on the resource allocation scheme, the optimization objective namely network resource efficiency can be calculated and load balancing is implemented by switching the user that can maximize the objective function. Lagrange Multipliers method and heuristic algorithm are used to resolve the formulated optimization problem. Simulation results show that our algorithm achieves better performance in terms of user throughput, fairness, load balancing index and unsatisfied user number compared with the traditional approach which takes resource allocation and load balancing into account, respectively
Modular feature selection using relative importance factors
Feature selection plays an important role in finding relevant or irrelevant features in classification. Genetic algorithms (GAs) have been used as conventional methods for classifiers to adaptively evolve solutions for classification problems. In this paper, we explore the use of feature selection in modular GA-based classification. We propose a new feature selection technique, Relative Importance Factor (RIF), to find irrelevant features in the feature space of each module. By removing these features, we aim to improve classification accuracy and reduce the dimensionality of classification problems. Benchmark classification data sets are used to evaluate the proposed approaches. The experiment results show that RIF can be used to determine irrelevant features and help achieve higher classification accuracy with the feature space dimension reduced. The complexity of the resulting rule sets is also reduced which means the modular classifiers with irrelevant features removed will be able to classify data with a higher throughput
Electroencephalogram evidence for the activation of human mirror neuron system during the observation of intransitive shadow and line drawing actions
This article is available open access from the NCBI website at the link below. Copyright 2013 © Neural Regeneration Research. This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Previous studies have demonstrated that hand shadows may activate the motor cortex associated with the mirror neuron system in human brain. However, there is no evidence of activity of the human mirror neuron system during the observation of intransitive movements by shadows and line drawings of hands. This study examined the suppression of electroencephalography mu waves (8–13 Hz) induced by observation of stimuli in 18 healthy students. Three stimuli were used: real hand actions, hand shadow actions and actions made by line drawings of hands. The results showed significant desynchronization of the mu rhythm (“mu suppression”) across the sensorimotor cortex (recorded at C3, Cz and C4), the frontal cortex (recorded at F3, Fz and F4) and the central and right posterior parietal cortex (recorded at Pz and P4) under all three conditions. Our experimental findings suggest that the observation of “impoverished hand actions”, such as intransitive movements of shadows and line drawings of hands, is able to activate widespread cortical areas related to the putative human mirror neuron system.The National Natural Science Foundation of China and the Research Fund for the Doctoral Program of Higher Education of China
- …