257,989 research outputs found
A nonperturbative parametrization and scenario for EFT renormalization
We present a universal form of the -matrices renormalized in
nonperturbative regime and the ensuing notions and properties that fail
conventional wisdoms. A universal scale is identified and shown to be
renormalization group invariant. The effective range parameters are derived in
a nonperturbative scenario with some new predictions within the realm of
contact potentials. Some controversies are shown to be due to the failure of
conventional wisdoms.Comment: 5 pages, no figure, to appear in Europhys. Let
Recommended from our members
Fire resistance of steel beam to square CFST column composite joints using RC slabs: Experiments and numerical studies
In this paper, experimental investigation and numerical simulation of steel beam to square concrete-filled steel tube (CFST) column composite joints that use reinforced concrete (RC) slabs subjected to localized and global fire conditions are presented. Eight joints were tested under the ISO 834 fire standard, and the effect of different parameters including the load ratio of beams, the beam-to-column ratio of linear stiffness, and different fire scenarios was studied during testing. The failure patterns and the thermal responses of the structural members including the temperature distribution, axial displacement of columns, vertical deflection of the beam ends, and fire resistance of the joints were recorded and discussed. The results show that tube buckling of the square CFST columns, flange buckling of the steel beams, and separation between the top flange of the steel beams and the RC slabs were the primary failure patterns of this type of joint. Moreover, the temperatures of structural members within the connection zone were lower than those in the other regions. Compared with other factors, the load ratio of the beams demonstrated a significant influence on the displacement of the structural members and the fire resistance of the joints. A three-dimensional finite element analysis (FEA) model was built to simulate the fire performance of this type of composite joint. The simulation results were compared to the test results in terms of failure patterns, temperature distributions, displacements, and fire resistances, and good agreement in general was achieved. Finally, the FEA model was adopted to examine the effect of parameters on the fire resistance of the composite joints with axial and flexural constraints applied at the ends of the beam
The Radial Spokes and Central Apparatus: Mechano-Chemical Transducers That Regulate Flagellar Motility
Field-ionization threshold and its induced ionization-window phenomenon for Rydberg atoms in a short single-cycle pulse
We study the field-ionization threshold behavior when a Rydberg atom is
ionized by a short single-cycle pulse field. Both hydrogen and sodium atoms are
considered. The required threshold field amplitude is found to scale
\emph{inversely} with the binding energy when the pulse duration becomes
shorter than the classical Rydberg period, and, thus, more weakly bound
electrons require larger fields for ionization. This threshold scaling behavior
is confirmed by both 3D classical trajectory Monte Carlo simulations and
numerically solving the time-dependent Schr\"{o}dinger equation. More
surprisingly, the same scaling behavior in the short pulse limit is also
followed by the ionization thresholds for much lower bound states, including
the hydrogen ground state. An empirical formula is obtained from a simple
model, and the dominant ionization mechanism is identified as a nonzero spatial
displacement of the electron. This displacement ionization should be another
important mechanism beyond the tunneling ionization and the multiphoton
ionization. In addition, an "ionization window" is shown to exist for the
ionization of Rydberg states, which may have potential applications to
selectively modify and control the Rydberg-state population of atoms and
molecules
SPLODE: Semi-Probabilistic Point and Line Odometry with Depth Estimation from RGB-D Camera Motion
Active depth cameras suffer from several limitations, which cause incomplete
and noisy depth maps, and may consequently affect the performance of RGB-D
Odometry. To address this issue, this paper presents a visual odometry method
based on point and line features that leverages both measurements from a depth
sensor and depth estimates from camera motion. Depth estimates are generated
continuously by a probabilistic depth estimation framework for both types of
features to compensate for the lack of depth measurements and inaccurate
feature depth associations. The framework models explicitly the uncertainty of
triangulating depth from both point and line observations to validate and
obtain precise estimates. Furthermore, depth measurements are exploited by
propagating them through a depth map registration module and using a
frame-to-frame motion estimation method that considers 3D-to-2D and 2D-to-3D
reprojection errors, independently. Results on RGB-D sequences captured on
large indoor and outdoor scenes, where depth sensor limitations are critical,
show that the combination of depth measurements and estimates through our
approach is able to overcome the absence and inaccuracy of depth measurements.Comment: IROS 201
Linear Theory of Pressure Oscillations in liquid-Fueled Ramjet Engines
Pressure oscillations in ramjet engines are studied.
within quasi one-dimensional linear acoustics. The flow
field in the dump combustor is approximated by division
into three parts: a flow of reactants, a region containing combustion products, and a recirculation zone, separated by a flame sheet and a dividing streamline.
The three zones are matched by considering kinematic
and conservation relations. Acoustic fields in the inlet
section and in the combustion chamber are coupled to
provide an analytical equation for the complex wave
number characterizing the linear stability. The calculated results are compared with the experimental data reported by the Naval Weapons Center. Reasonable agreements are obtained
- …
