82,673 research outputs found
Anisotropic swim stress in active matter with nematic order
Active Brownian Particles (ABPs) transmit a swim pressure to the container boundaries, where is the drag coefficient,
is the swim diffusivity and is the uniform bulk number density
far from the container walls. In this work we extend the notion of the
isotropic swim pressure to the anisotropic tensorial swim stress
, which is related to the
anisotropic swim diffusivity . We demonstrate this
relationship with ABPs that achieve nematic orientational order via a bulk
external field. The anisotropic swim stress is obtained analytically for dilute
ABPs in both 2D and 3D systems, and the anisotropy is shown to grow
exponentially with the strength of the external field. We verify that the
normal component of the anisotropic swim stress applies a pressure
on a wall
with normal vector , and, through Brownian dynamics simulations,
this pressure is shown to be the force per unit area transmitted by the active
particles. Since ABPs have no friction with a wall, the difference between the
normal and tangential stress components -- the normal stress difference --
generates a net flow of ABPs along the wall, which is a generic property of
active matter systems
Growth mechanism of nanostructured superparamagnetic rods obtained by electrostatic co-assembly
We report on the growth of nanostructured rods fabricated by electrostatic
co-assembly between iron oxide nanoparticles and polymers. The nanoparticles
put under scrutiny, {\gamma}-Fe2O3 or maghemite, have diameter of 6.7 nm and
8.3 nm and narrow polydispersity. The co-assembly is driven by i) the
electrostatic interactions between the polymers and the particles, and by ii)
the presence of an externally applied magnetic field. The rods are
characterized by large anisotropy factors, with diameter 200 nm and length
comprised between 1 and 100 {\mu}m. In the present work, we provide for the
first time the morphology diagram for the rods as a function of ionic strength
and concentration. We show the existence of a critical nanoparticle
concentration and of a critical ionic strength beyond which the rods do not
form. In the intermediate regimes, only tortuous and branched aggregates are
detected. At higher concentrations and lower ionic strengths, linear and stiff
rods with superparamagnetic properties are produced. Based on these data, a
mechanism for the rod formation is proposed. The mechanism proceeds in two
steps : the formation and growth of spherical clusters of particles, and the
alignment of the clusters induced by the magnetic dipolar interactions. As far
as the kinetics of these processes is concerned, the clusters growth and their
alignment occur concomitantly, leading to a continuous accretion of particles
or small clusters, and a welding of the rodlike structure.Comment: 15 pages, 10 figures, one tabl
On a refinement of Wilf-equivalence for permutations
Recently, Dokos et al. conjectured that for all , the patterns and
are -Wilf-equivalent. In this paper, we confirm this conjecture for all
and . In fact, we construct a descent set preserving bijection
between -avoiding permutations and -avoiding
permutations for all . As a corollary, our bijection enables us to
settle a conjecture of Gowravaram and Jagadeesan concerning the
Wilf-equivalence for permutations with given descent sets
Secure thermal infrared communications using engineered blackbody radiation
The thermal (emitted) infrared frequency bands, from 20–40 THz and 60–100 THz, are best known for applications in thermography. This underused and unregulated part of the spectral range offers opportunities for the development of secure communications. The ‘THz Torch' concept was recently presented by the authors. This technology fundamentally exploits engineered blackbody radiation, by partitioning thermally-generated spectral noise power into pre-defined frequency channels; the energy in each channel is then independently pulsed modulated and multiplexing schemes are introduced to create a robust form of short-range secure communications in the far/mid infrared. To date, octave bandwidth (25–50 THz) single-channel links have been demonstrated with 380 bps speeds. Multi-channel ‘THz Torch' frequency division multiplexing (FDM) and frequency-hopping spread-spectrum (FHSS) schemes have been proposed, but only a slow 40 bps FDM scheme has been demonstrated experimentally. Here, we report a much faster 1,280 bps FDM implementation. In addition, an experimental proof-of-concept FHSS scheme is demonstrated for the first time, having a 320 bps data rate. With both 4-channel multiplexing schemes, measured bit error rates (BERs) of < 10(−6) are achieved over a distance of 2.5 cm. Our approach represents a new paradigm in the way niche secure communications can be established over short links
Combined large-N_c and heavy-quark operator analysis for the chiral Lagrangian with charmed baryons
The chiral Lagrangian with charmed baryons of spin and
is analyzed. We consider all counter terms that are relevant at
next-to-next-to-next-to-leading order (NLO) in a chiral extrapolation of
the charmed baryon masses. At NLO we find 16 low-energy parameters. There
are 3 mass parameters for the anti-triplet and the two sextet baryons, 6
parameters describing the meson-baryon vertices and 7 symmetry breaking
parameters. The heavy-quark spin symmetry predicts four sum rules for the
meson-baryon vertices and degenerate masses for the two baryon sextet fields.
Here a large- operator analysis at NLO suggests the relevance of one
further spin-symmetry breaking parameter. Going from NLO to NLO adds 17
chiral symmetry breaking parameters and 24 symmetry preserving parameters. For
the leading symmetry conserving two-body counter terms involving two baryon
fields and two Goldstone boson fields we find 36 terms. While the heavy-quark
spin symmetry leads to sum rules, an expansion in at
next-to-leading order (NLO) generates parameter relations. A
combined expansion leaves 3 unknown parameters only. For the symmetry breaking
counter terms we find 17 terms, for which there are sum rules from the
heavy-quark spin symmetry and sum rules from a expansion at
NLO.Comment: 34 pages - one table - corrections applie
A Mixture-Based Approach to Regional Adaptation for MCMC
Recent advances in adaptive Markov chain Monte Carlo (AMCMC) include the need
for regional adaptation in situations when the optimal transition kernel is
different across different regions of the sample space. Motivated by these
findings, we propose a mixture-based approach to determine the partition needed
for regional AMCMC. The mixture model is fitted using an online EM algorithm
(see Andrieu and Moulines, 2006) which allows us to bypass simultaneously the
heavy computational load and to implement the regional adaptive algorithm with
online recursion (RAPTOR). The method is tried on simulated as well as real
data examples
- …
