298 research outputs found

    Fidelity estimation of quantum states on a silicon photonic chip

    Full text link
    As a measure of the 'closeness' of two quantum states, fidelity plays a fundamental role in quantum information theory. Fidelity estimation protocols try to strike a balance between information gleaned from an experiment, and the efficiency of its implementation, in terms of the number of states consumed by the protocol. Here we adapt a previously reported optimal state verification protocol (Phys. Rev. Lett. 120, 170502, 2018) for fidelity estimation of two-qubit states. We demonstrate the protocol experimentally using a fully-programmable silicon photonic two-qubit chip. Our protocol outputs significantly smaller error bars of its point estimate in comparison with another widely-used estimation protocol, showing a clear step forward in the ability to estimate the fidelity of quantum states produced by a practical device

    Interpretable Subgroup Discovery in Treatment Effect Estimation with Application to Opioid Prescribing Guidelines

    Full text link
    The dearth of prescribing guidelines for physicians is one key driver of the current opioid epidemic in the United States. In this work, we analyze medical and pharmaceutical claims data to draw insights on characteristics of patients who are more prone to adverse outcomes after an initial synthetic opioid prescription. Toward this end, we propose a generative model that allows discovery from observational data of subgroups that demonstrate an enhanced or diminished causal effect due to treatment. Our approach models these sub-populations as a mixture distribution, using sparsity to enhance interpretability, while jointly learning nonlinear predictors of the potential outcomes to better adjust for confounding. The approach leads to human-interpretable insights on discovered subgroups, improving the practical utility for decision suppor

    Optical pumping NMR in the compensated semiconductor InP:Fe

    Full text link
    The optical pumping NMR effect in the compensated semiconductor InP:Fe has been investigated in terms of the dependences of photon energy (E_p), helicity (sigma+-), and exposure time (tau_L) of infrared lights. The {31}P and {115}In signal enhancements show large sigma+- asymmetries and anomalous oscillations as a function of E_p. We find that (i) the oscillation period as a function of E_p is similar for {31}P and {115}In and almost field independent in spite of significant reduction of the enhancement in higher fields. (ii) A characteristic time for buildup of the {31}P polarization under the light exposure shows strong E_p-dependence, but is almost independent of sigma+-. (iii) The buildup times for {31}P and {115}In are of the same order (10^3 s), although the spin-lattice relaxation times (T_1) are different by more than three orders of magnitude between them. The results are discussed in terms of (1) discrete energy spectra due to donor-acceptor pairs (DAPs) in compensated semiconductors, and (2) interplay between {31}P and dipolar ordered indium nuclei, which are optically induced.Comment: 8 pages, 6 figures, submitted to Physical Review

    Convolution surfaces with varying radius: Formulae for skeletons made of arcs of circles and line segments

    Get PDF
    International audienceWe develop closed form formulae for the computation of the defining fields of convolutions surfaces. The formulae are obtained for power inverse kernels with skeletons made of line segments or arcs of circle. To obtain the formulae we use Creative Telescoping and describe how this technique can be used for other families of kernels and skeleton primitives. We apply the new formulae to obtain convolution surfaces around G1\mathcal{G}^1 skeletons, some of them closed curves. We showcase how the use of arcs of circles greatly improves the visualization of the surface around a general curve compared with a segment based approach

    Optical Coherence Tomography Angiography of Optic Disc Perfusion in Glaucoma

    Get PDF
    Purpose To compare optic disc perfusion between normal subjects and subjects with glaucoma using optical coherence tomography (OCT) angiography and to detect optic disc perfusion changes in glaucoma. Design Observational, cross-sectional study. Participants Twenty-four normal subjects and 11 patients with glaucoma were included. Methods One eye of each subject was scanned by a high-speed 1050-nm–wavelength swept-source OCT instrument. The split-spectrum amplitude-decorrelation angiography (SSADA) algorithm was used to compute 3-dimensional optic disc angiography. A disc flow index was computed from 4 registered scans. Confocal scanning laser ophthalmoscopy (cSLO) was used to measure disc rim area, and stereo photography was used to evaluate cup/disc (C/D) ratios. Wide-field OCT scans over the discs were used to measure retinal nerve fiber layer (NFL) thickness. Main Outcome Measures Variability was assessed by coefficient of variation (CV). Diagnostic accuracy was assessed by sensitivity and specificity. Comparisons between glaucoma and normal groups were analyzed by Wilcoxon rank-sum test. Correlations among disc flow index, structural assessments, and visual field (VF) parameters were assessed by linear regression. Results In normal discs, a dense microvascular network was visible on OCT angiography. This network was visibly attenuated in subjects with glaucoma. The intra-visit repeatability, inter-visit reproducibility, and normal population variability of the optic disc flow index were 1.2%, 4.2%, and 5.0% CV, respectively. The disc flow index was reduced by 25% in the glaucoma group (P = 0.003). Sensitivity and specificity were both 100% using an optimized cutoff. The flow index was highly correlated with VF pattern standard deviation (R[superscript 2] = 0.752, P = 0.001). These correlations were significant even after accounting for age, C/D area ratio, NFL, and rim area. Conclusions Optical coherence tomography angiography, generated by the new SSADA, repeatably measures optic disc perfusion and may be useful in the evaluation of glaucoma and glaucoma progression.National Institutes of Health (U.S.) (Grant 1R01 EY023285-01)Rosenbaum's P30EY010572National Institutes of Health (U.S.). Clinical and Translational Science Awards (CTSA) Program (Grant UL1TR000128)Research to Prevent Blindness, Inc. (United States) (Grant R01-EY11289-26)United States. Air Force Office of Scientific Research (FA9550-10-1-0551)German Research Foundation (DFG-HO-1791/11-1)German Research Foundation (DFG-GSC80-SAOT)German Research Foundation (Training Group 1773

    Modeling and analysis of energy distribution networks using switched differential systems

    No full text
    It is a pleasure to dedicate this contribution to Prof. Arjan van der Schaft on the occasion of his 60th birthday. We study the dynamics of energy distribution networks consisting of switching power converters and multiple (dis-)connectable modules. We use parsimonious models that deal effectively with the variant complexity of the network and the inherent switching phenomena induced by power converters. We also present the solution to instability problems caused by devices with negative impedance characteristics such as constant power loads. Elements of the behavioral system theory such as linear differential behaviors and quadratic differential forms are crucial in our analysis

    Helicobacter pylori chronic infection and mucosal inflammation switches the human gastric glycosylation pathways

    Get PDF
    Helicobacter pylori exploits host glycoconjugates to colonize the gastric niche. Infection can persist for decades promoting chronic inflammation, and in a subset of individuals lesions can silently progress to cancer. This study shows that H. pylori chronic infection and gastric tissue inflammation result in a remodeling of the gastric glycophenotype with increased expression of sialyl-Lewis a/x antigens due to transcriptional up-regulation of the B3GNT5, B3GALT5, and FUT3 genes. We observed that H. pylori infected individuals present a marked gastric local pro-inflammatory signature with significantly higher TNF-a levels and demonstrated that TNF-induced activation of the NF-kappaB pathway results in B3GNT5 transcriptional up-regulation. Furthermore, we show that this gastric glycosylation shift, characterized by increased sialylation patterns, favors SabA-mediated H. pylori attachment to human inflamed gastric mucosa. This study provides novel clinically relevant insights into the regulatory mechanisms underlying H. pylori modulation of host glycosylation machinery, and phenotypic alterations crucial for life-long infection. Moreover, the biosynthetic pathways here identified as responsible for gastric mucosa increased sialylation, in response to H. pylori infection, can be exploited as drug targets for hindering bacteria adhesion and counteract the infection chronicity.IPATIMUP integrates the i3S Research Unit, which is partially supported by FCT, the Portuguese Foundation for Science and Technology (PEst C/SAU/LA0003/2013). This work is funded by FEDER funds through the Operational Programme for Competitiveness Factors-COMPETE (NORTE 07 0124 FEDER 000024; FCOMP-01-0124-FEDER028188; FCOMP-01-0124-FEDER 041276) and National Funds through the FCT-Foundation for Science and Technology (EXPL/CTM-BIO/0762/2013, PTDC/BBB-EBI/0786/2012) and acknowledges support by the EuropeanUnion (Seventh Framework Programme GastricGlycoExplorer project, grant number 316929). Grants were received from FCT, POPH (Programa Operacional Potencial Humano) and FSE (Fundo Social Europeu) (SFRH/BPD/75871/2011 to AM;SFRH/SINTD/60034/2009 to RMP; SFRH/BPD/84084/2012 to RMF; SFRH/BPD/89764/2012 to PO). AM acknowledges EMBO for a Short-Term Fellowship (EMBO ASTF 330-212). Transcript analysis was funded by NIH (grant P41GM103490) to KWM
    • …
    corecore