64 research outputs found

    Reconstitution of the lactate carrier from rat skeletal-muscle sarcolemma

    Full text link

    Social Defeat during Adolescence and Adulthood Differentially Induce BDNF-Regulated Immediate Early Genes

    Get PDF
    Stressful life events generally enhance the vulnerability for the development of human psychopathologies such as anxiety disorders and depression. The incidence rates of adult mental disorders steeply rises during adolescence in parallel with a structural and functional reorganization of the neural circuitry underlying stress reactivity. However, the mechanisms underlying susceptibility to stress and manifestation of mental disorders during adolescence are little understood. We hypothesized that heightened sensitivity to stress during adolescence reflects age-dependent differences in the expression of activity-dependent genes involved in synaptic plasticity. Therefore, we compared the effect of social stress during adolescence with social stress in adulthood on the expression of a panel of genes linked to induction of long-term potentiation (LTP) and brain-derived neurotrophic factor (BDNF) signaling. We show that social defeat during adolescence and adulthood differentially regulates expression of the immediate early genes BDNF, Arc, Carp, and Tieg1, as measured by qPCR in tissue lysates from prefrontal cortex, nucleus accumbens, and hippocampus. In the hippocampus, mRNA levels for all four genes were robustly elevated following social defeat in adolescence, whereas none were induced by defeat in adulthood. The relationship to coping style was also examined using adult reactive and proactive coping rats. Gene expression levels of reactive and proactive animals were similar in the prefrontal cortex and hippocampus. However, a trend toward a differential expression of BDNF and Arc mRNA in the nucleus accumbens was detected. BDNF mRNA was increased in the nucleus accumbens of proactive defeated animals, whereas the expression level in reactive defeated animals was comparable to control animals. The results demonstrate striking differences in immediate early gene expression in response to social defeat in adolescent and adult rats

    Impact of the Mitochondrial Genetic Background in Complex III Deficiency

    Get PDF
    BACKGROUND: In recent years clinical evidence has emphasized the importance of the mtDNA genetic background that hosts a primary pathogenic mutation in the clinical expression of mitochondrial disorders, but little experimental confirmation has been provided. We have analyzed the pathogenic role of a novel homoplasmic mutation (m.15533 A>G) in the cytochrome b (MT-CYB) gene in a patient presenting with lactic acidosis, seizures, mild mental delay, and behaviour abnormalities. METHODOLOGY: Spectrophotometric analyses of the respiratory chain enzyme activities were performed in different tissues, the whole muscle mitochondrial DNA of the patient was sequenced, and the novel mutation was confirmed by PCR-RFLP. Transmitochondrial cybrids were constructed to confirm the pathogenicity of the mutation, and assembly/stability studies were carried out in fibroblasts and cybrids by means of mitochondrial translation inhibition in combination with blue native gel electrophoresis. PRINCIPAL FINDINGS: Biochemical analyses revealed a decrease in respiratory chain complex III activity in patient's skeletal muscle, and a combined enzyme defect of complexes III and IV in fibroblasts. Mutant transmitochondrial cybrids restored normal enzyme activities and steady-state protein levels, the mutation was mildly conserved along evolution, and the proband's mother and maternal aunt, both clinically unaffected, also harboured the homoplasmic mutation. These data suggested a nuclear genetic origin of the disease. However, by forcing the de novo functioning of the OXPHOS system, a severe delay in the biogenesis of the respiratory chain complexes was observed in the mutants, which demonstrated a direct functional effect of the mitochondrial genetic background. CONCLUSIONS: Our results point to possible pitfalls in the detection of pathogenic mitochondrial mutations, and highlight the role of the genetic mtDNA background in the development of mitochondrial disorders

    MicroRNA networks direct neuronal development and plasticity

    Get PDF
    MicroRNAs (miRNAs) constitute a class of small, non-coding RNAs that act as post-transcriptional regulators of gene expression. In neurons, the functions of individual miRNAs are just beginning to emerge, and recent studies have elucidated roles for neural miRNAs at various stages of neuronal development and maturation, including neurite outgrowth, dendritogenesis, and spine formation. Notably, miRNAs regulate mRNA translation locally in the axosomal and synaptodendritic compartments, and thereby contribute to the dynamic spatial organization of axonal and dendritic structures and their function. Given the critical role for miRNAs in regulating early brain development and in mediating synaptic plasticity later in life, it is tempting to speculate that the pathology of neurological disorders is affected by altered expression or functioning of miRNAs. Here we provide an overview of recently identified mechanisms of neuronal development and plasticity involving miRNAs, and the consequences of miRNA dysregulation

    Reconstitution of the lactate carrier from rat skeletal-muscle sarcolemma.

    No full text
    The lactate carrier was solubilized from purified rat skeletal-muscle sarcolemma with the detergent decanoyl-N-methyl-glucamide and the solubilized carrier was reconstituted into phospholipid vesicles. Reconstituted proteoliposomes showed a faster time course of L-lactate uptake than did protein-free liposomes. The rate of L-lactate uptake into the proteoliposomes was inhibited by the lactate-transport inhibitors p-chloromercuribenzenesulphonate, diethyl pyrocarbonate, alpha-cyano-4-hydroxycinnamate and quercetin. In contrast, the anion-exchange inhibitor DIDS (4,4'-di-isothiocyanostilbene-2,2'-disulphonate) had almost no effect on the uptake. The extent of L-lactate uptake at equilibrium was not affected by the presence of the transport inhibitors, but was sensitive to osmotic strength. L-Lactate and pyruvate, but not D-lactate, inhibited L-lactate uptake when present at 10-fold excess. The properties of L-lactate transport in reconstituted proteoliposomes were similar to those observed in native sarcolemmal vesicles, i.e. the lactate carrier seems to retain its transport characteristics during the solubilization and reconstitution steps

    Opening of glibenclamide-sensitive K+ channels in follicular cells promotes Xenopus oocyte maturation.

    No full text
    corecore