19 research outputs found

    Strong-coupling approach for strongly correlated electron systems

    Full text link
    A perturbation theory scheme in terms of electron hopping, which is based on the Wick theorem for Hubbard operators, is developed. Diagrammatic series contain single-site vertices connected by hopping lines and it is shown that for each vertex the problem splits into the subspaces with ``vacuum states'' determined by the diagonal Hubbard operators and only excitations around these vacuum states are allowed. The rules to construct diagrams are proposed. In the limit of infinite spatial dimensions the total auxiliary single-site problem exactly splits into subspaces that allows to build an analytical thermodynamically consistent approach for a Hubbard model. Some analytical results are given for the simple approximations when the two-pole (alloy-analogy solution) and four-pole (Hartree-Fock approximation) structure for Green's function is obtained. Two poles describe contribution from the Fermi-liquid component, which is dominant for small electron and hole concentrations (``overdoped case'' of high-TcT_c's), whereas other two describe contribution from the non-Fermi liquid and are dominant close to half-filling (``underdoped case'').Comment: 14 pages, revtex, feynmf, 5 EPS figures, two-column PRB style, published in PR

    Insulating phases of the infinite-dimensional Hubbard model

    Full text link
    A theory is developed for the T=0 Mott-Hubbard insulating phases of the infinite-dimensional Hubbard model at half-filling, including both the antiferromagnetic (AF) and paramagnetic (P) insulators. Local moments are introduced explicitly from the outset, enabling ready identification of the dominant low energy scales for insulating spin- flip excitations. Dynamical coupling of single-particle processes to the spin-flip excitations leads to a renormalized self-consistent description of the single-particle propagators that is shown to be asymptotically exact in strong coupling, for both the AF and P phases. For the AF case, the resultant theory is applicable over the entire U-range, and is discussed in some detail. For the P phase, we consider in particular the destruction of the Mott insulator, the resultant critical behaviour of which is found to stem inherently from proper inclusion of the spin-flip excitations.Comment: 13 pages Revtex, 12 postscript figure

    Fermi Liquid Damping and NMR Relaxation in Superconductors

    Full text link
    Electron collisions for a two dimensional Fermi liquid (FL) are shown to give a quasiparticle damping with interesting frequency and temperature variations in the BCS superconducting state. The spin susceptibility which determines the structure of the damping is analyzed in the normal state for a Hubbard model with a constant on--site Coulomb repulsion. This is then generalized to the superconducting state by including coherence factors and self energy and vertex corrections. Calculations of the NMR relaxation rate reveal that the FL damping structure can reduce the Hebel--Slichter peak, in agreement with data on the organic superconductor (MDT-TTF)2_2AuI2_2. However, the strongly suppressed FL damping in the superconducting state does not eliminate the Hebel-Slichter peak, and thus suggests that other mechanisms are needed to explain the NMR data on (TMTSF)2_2ClO4_4, the BEDT organic compounds, and cuprate superconductors. Predictions of the temperature variation of the damping and the spin response are given over a wide frequency range as a guide to experimental probes of the symmetry of the superconducting pairs.Comment: 10 pages, RevTeX 3.0, 9 figures in uuencoded postscrip

    Effect of Disorder on Fermi surface in Heavy Electron Systems

    Full text link
    The Kondo lattice model with substitutional disorder is studied with attention to the size of the Fermi surface and the associated Dingle temperature. The model serves for understanding heavy-fermion Ce compounds alloyed with La according to substitution Ce{x}La{1-x}. The Fermi surface is identified from the steepest change of the momentum distribution of conduction electrons, and is derived at low enough temperature by the dynamical mean-field theory (DMFT) combined with the coherent potential approximation (CPA). The Fermi surface without magnetic field increases in size with decreasing x from x=1 (Ce end), and disappears at such x that gives the same number of localized spins as that of conduction electrons. From the opposite limit of x=0 (La end), the Fermi surface broadens quickly as x increases, but stays at the same position as that of the La end. With increasing magnetic field, a metamagnetic transition occurs, and the Fermi surface above the critical field changes continuously across the whole range of x. The Dingle temperature takes a maximum around x=0.5. Implication of the results to experimental observation is discussed.Comment: 5 pages, 5 figure

    Quasiparticle Inelastic Lifetime from Paramagnons in Disordered Superconductors

    Full text link
    The paramagnon contribution to the quasiparticle inelastic scattering rate in disordered superconductors is presented. Using Anderson's exact eigenstate formalism, it is shown that the scattering rate is Stoner enhanced and is further enhanced by the disorder relative to the clean case in a manner similar to the disorder enhancement of the long-range Coulomb contribution. The results are discussed in connection with the possibility of conventional or unconventional superconductivity in the borocarbides. The results are compared to recent tunneling experiments on LuNi2_{2}B2_{2}C.Comment: 5 pages, no figure

    Self-Consistent Approximations for Superconductivity beyond the Bardeen-Cooper-Schrieffer Theory

    Full text link
    We develop a concise self-consistent perturbation expansion for superconductivity where all the pair processes are naturally incorporated without drawing "anomalous" Feynman diagrams. This simplification results from introducing an interaction vertex that is symmetric in the particle-hole indices besides the ordinary space-spin coordinates. The formalism automatically satisfies conservation laws, includes the Luttinger-Ward theory as the normal-state limit, and reproduces the Bardeen-Cooper-Schrieffer theory as the lowest-order approximation. It enables us to study the thermodynamic, single-particle, two-particle, and dynamical properties of superconductors with competing fluctuations based on a single functional Φ[G^]\Phi[\hat{G}] of Green's function G^\hat{G} in the Nambu space. Specifically, we derive closed equations in the FLEX-S approximation, i.e., the fluctuation exchange approximation for superconductivity with all the pair processes, which contains extra terms besides those in the standard FLEX approximation.Comment: 14 pages, 6 figure

    The Hubbard model within the equations of motion approach

    Full text link
    The Hubbard model has a special role in Condensed Matter Theory as it is considered as the simplest Hamiltonian model one can write in order to describe anomalous physical properties of some class of real materials. Unfortunately, this model is not exactly solved except for some limits and therefore one should resort to analytical methods, like the Equations of Motion Approach, or to numerical techniques in order to attain a description of its relevant features in the whole range of physical parameters (interaction, filling and temperature). In this manuscript, the Composite Operator Method, which exploits the above mentioned analytical technique, is presented and systematically applied in order to get information about the behavior of all relevant properties of the model (local, thermodynamic, single- and two- particle ones) in comparison with many other analytical techniques, the above cited known limits and numerical simulations. Within this approach, the Hubbard model is shown to be also capable to describe some anomalous behaviors of the cuprate superconductors.Comment: 232 pages, more than 300 figures, more than 500 reference

    The peak in the thermal conductivity of Cu-O superconductors: Electronic or phononic origin?

    Full text link
    The thermal conductivity Đš of hole-doped Cu-O plane high- T c perovskites exhibits a dramatic increase below T c which results in a pronounced peak near T c /2. The origin of this peak was initially thought to arise from an enhancement in the mean-free path of phonons as the charge carriers undergo condensation. Indeed, excellent fits to the data can be obtained with physically reasonable parameters using the conventional theory of lattice conduction in superconductors. In contrast, a recently observed sharp decrease in the quasiparticle scattering rate of YBCO single crystals below T c has motivated proposals for an electronic origin of the thermal conductivity peak. We shall critically examine experimental evidence and highlight relative advantages and shortcomings of the two contrasting interpretations. Furthermore, we shall draw attention to recently available data on the relaxation time of out-of-equilibrium carriers in Cu-O superconductors obtained using pump-probe femtosecond laser studies and what new light they shed on the controversy.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45122/1/10948_2004_Article_BF00724562.pd
    corecore