1,053 research outputs found

    ROSAT All-Sky Survey observations of IRAS galaxies; I. Soft X-ray and far-infrared properties

    Get PDF
    The 120,000 X-ray sources detected in the RASS II processing of the ROSAT All-Sky Survey are correlated with the 14,315 IRAS galaxies selected from the IRAS Point Source Catalogue: 372 IRAS galaxies show X-ray emission within a distance of 100 arcsec from the infrared position. By inspecting the structure of the X-ray emission in overlays on optical images we quantify the likelihood that the X-rays originate from the IRAS galaxy. For 197 objects the soft X-ray emission is very likely associated with the IRAS galaxy. Their soft X-ray properties are determined and compared with their far-infrared emission. X-ray contour plots overlaid on Palomar Digitized Sky Survey images are given for each of the 372 potential identifications. All images and tables displayed here are also available in electronic form.Comment: accepted for publication in A&AS, complete version including all figures and tables available at http://www.rosat.mpe-garching.mpg.de/~bol/iras_rassI

    The Arecibo Legacy Fast ALFA Survey: IV. Strategies for Signal Identification and Survey Catalog Reliability

    Get PDF
    We present a signal extraction utility written for the purposes of the Arecibo Legacy Fast ALFA survey (ALFALFA). This survey, when completed, will have covered 7000 square degrees of the high galactic latitude sky and should detect over 20,000 extragalactic objects. It is the most sensitive blind HI survey to date. The large size of the survey justifies in itself the need for an automated way of identifying signals in the data set. The matched-filtering signal extractor proposed is based on convolutions in the Fourier domain of templates of varying widths with each spectrum. The chosen templates are built from a simple combination of Hermite functions to mimic the shape of typical galactic HI profiles of varying widths. The main advantages of this matched-filtering approach are a sensitivity to the total flux of the signals (and not only to peak flux), robustness against instabilities and short computing times. The details of the algorithm are given here, as well as results of simulations that assess the reliability and completeness of the process.Comment: 10 pages, 8 figures, accepted for publication in the Astronomical Journal. Higher resolution figures available at http://egg.astro.cornell.edu/alfalfa/index.ph

    The Effect of Hot Gas in WMAP's First Year Data

    Full text link
    By cross-correlating templates constructed from the 2 Micron All Sky Survey (2MASS) Extended Source (XSC) catalogue with WMAP's first year data, we search for the thermal Sunyaev-Zel'dovich signature induced by hot gas in the local Universe. Assuming that galaxies trace the distribution of hot gas, we select regions on the sky with the largest projected density of galaxies. Under conservative assumptions on the amplitude of foreground residuals, we find a temperature decrement of -35 ±\pm 7 μ\muK (5σ\sim 5\sigma detection level, the highest reported so far) in the \sim 26 square degrees of the sky containing the largest number of galaxies per solid angle. We show that most of the reported signal is caused by known galaxy clusters which, when convolved with the average beam of the WMAP W band channel, subtend a typical angular size of 20--30 arcmins. Finally, after removing from our analyses all pixels associated with known optical and X-ray galaxy clusters, we still find a tSZ decrement of -96 ±\pm 37 μ\muK in pixels subtending about \sim 0.8 square degrees on the sky. Most of this signal is coming from five different cluster candidates in the Zone of Avoidance (ZoA), present in the Clusters In the ZoA (CIZA) catalogue. We found no evidence that structures less bound than clusters contribute to the tSZ signal present in the WMAP data.Comment: 10 pages, 4 figures, matches accepted version in ApJ Letter

    Opening the random forest black box by the analysis of the mutual impact of features

    Full text link
    Random forest is a popular machine learning approach for the analysis of high-dimensional data because it is flexible and provides variable importance measures for the selection of relevant features. However, the complex relationships between the features are usually not considered for the selection and thus also neglected for the characterization of the analysed samples. Here we propose two novel approaches that focus on the mutual impact of features in random forests. Mutual forest impact (MFI) is a relation parameter that evaluates the mutual association of the featurs to the outcome and, hence, goes beyond the analysis of correlation coefficients. Mutual impurity reduction (MIR) is an importance measure that combines this relation parameter with the importance of the individual features. MIR and MFI are implemented together with testing procedures that generate p-values for the selection of related and important features. Applications to various simulated data sets and the comparison to other methods for feature selection and relation analysis show that MFI and MIR are very promising to shed light on the complex relationships between features and outcome. In addition, they are not affected by common biases, e.g. that features with many possible splits or high minor allele frequencies are prefered

    Measurement of the electron-pressure profile of galaxy clusters in Wilkinson Microwave Anisotropy Probe (WMAP) 3-year data

    Full text link
    Using WMAP 3-year data at the locations of close to 700\sim 700 X-ray selected clusters we have detected the amplitude of the thermal Sunyaev-Zeldovich (TSZ) effect at the 15σ\sigma level, the highest statistical significance reported so far. Owing to the large size of our cluster sample, we are able to detect the corresponding CMB distortions out to large cluster-centric radii. The region over which the TSZ signal is detected is, on average, four times larger in radius than the X-ray emitting region, extending to 3h701\sim 3h_{70}^{-1}Mpc. We show that an isothermal β\beta model does not fit the electron pressure at large radii; instead, the baryon profile is consistent with the Navarro-Frenk-White profile, expected for dark matter in the concordance Λ\LambdaCDM model. The X-ray temperature at the virial radius of the clusters falls by a factor 34\sim 3-4 from the central value, depending on the cluster concentration parameter. Our results suggest that cluster dynamics at large radii is dominated by dark matter and is well described by Newtonian gravity.Comment: ApJ Lett, to be published on March 10th, 200

    No Confirmed New Isolated Neutron Stars In The SDSS Data Release 4

    Get PDF
    We report on follow-up observations of candidate X-ray bright, radio-quiet isolated neutron stars (INSs) identified from correlations of the ROSAT All-Sky Survey (RASS) and the Sloan Digital Sky Survey (SDSS) Data Release 4 in Ag\"ueros et al. (2006). We obtained Chandra X-ray Telescope exposures for 13 candidates in order to pinpoint the source of X-ray emission in optically blank RASS error circles. These observations eliminated 12 targets as good INS candidates. We discuss subsequent observations of the remaining candidate with the XMM-Newton X-ray Observatory, the Gemini North Observatory, and the Apache Point Observatory. We identify this object as a likely extragalactic source with an unusually high log(fX/fopt) ~ 2.4. We also use an updated version of the population synthesis models of Popov et al. (2010) to estimate the number of RASS-detected INSs in the SDSS Data Release 7 footprint. We find that these models predict ~3-4 INSs in the 11,000 square deg imaged by SDSS, which is consistent with the number of known INSs that fall within the survey footprint. In addition, our analysis of the four new INS candidates identified by Turner et al. (2010) in the SDSS footprint implies that they are unlikely to be confirmed as INSs; together, these results suggest that new INSs are not likely to be found from further correlations of the RASS and SDSS.Comment: 11 pages, 2 figures, 3 tables; accepted for publication in A

    Precursor Plerionic Activity and High Energy Gamma-Ray Emission in the Supranova Model of Gamma-Ray Bursts

    Get PDF
    The supranova model of gamma-ray bursts (GRBs), in which the GRB event is preceded by a supernova (SN) explosion by a few months to years, has recently gained support from Fe line detections in X-ray afterglows. A crucial ingredient of this model yet to be studied is the fast-rotating pulsar that should be active during the time interval between the SN and the GRB, driving a powerful wind and a luminous plerionic nebula. We discuss some observational consequences of this precursor plerion, which should provide important tests for the supranova model: 1) the fragmentation of the outlying SN ejecta material by the plerion and its implications for Fe line emission; and 2) the effect of inverse Compton cooling and emission in the GRB external shock due to the plerion radiation field. The plerion-induced inverse Compton emission can dominate in the GeV-TeV energy range during the afterglow, being detectable by GLAST from redshifts z1.5z \lesssim 1.5 and distinguishable from self-Compton emission by its spectrum and light curve. The prospects for direct detection and identification of the precursor plerion emission are also briefly considered.Comment: ApJ vol.583, in pres
    corecore