168 research outputs found

    Measures and outcomes of a psychosocial group approach in Rwanda

    Get PDF
    This thesis presents different aspects of a quasi-experimental, longitudinal study on a psychosocial intervention (sociotherapy) in northern Rwanda, combining measurements on mental health, social functioning, intimate partner violence and social capital

    The role of turbulent coherent structures on microalgal mixing for nutrient removal in jet and paddlewheel raceway ponds

    Get PDF
    Outdoor studies were conducted on microalgae cultures in two raceway ponds (kept in constant motion with either jet or paddlewheel) with a flatbed to treat anaerobic digestion piggery effluent and to observe the characteristics of turbulence on microalgal mixing and growth. Acoustic Doppler Velocimeters (ADV) were deployed to record the instantaneous velocity components and acoustic backscatter as a substitution of microalgae concentration. The present research on microalgal mixing considers the effect of event-based turbulent features such as the widely known ‘turbulent bursting’ phenomenon. This is an important aspect, as turbulent coherent structures can result in microalgal mixing, which can lead to significant changes in microalgal growth. The experimental results presented in this paper of two contrasting environments of jet- and paddlewheel-driven ponds suggested that: (1) turbulent bursting events significantly contributed to microalgal mixing when paddlewheels and jets were used; (2) among four type of turbulent bursting events, ejections and sweeps contributed more to the total microalgal mixing; and, (3) a correlation was revealed using wavelet transform between the momentum and microalgal mixing flux when either jet or paddlewheel were used. Such similarities in jet and paddlewheel raceway ponds highlight the need to introduce turbulent coherent structures as an essential parameter for microalgal mixing studies

    Identification of Burkholderia spp. in the clinical microbiology laboratory: comparison of conventional and molecular methods

    Get PDF
    Cystic fibrosis (CF) predisposes patients to bacterial colonization and infection of the lower airways. Several species belonging to the genus Burkholderia are potential CF-related pathogens, but microbiological identification may be complicated. This situation is not in the least due to the poorly defined taxonomic status of these bacteria, and further validation of the available diagnostic assays is required. A total of 114 geographically diverse bacterial isolates, previously identified in reference laboratories as Burkholderia cepacia (n = 51), B. gladioli (n = 14), Ralstonia pickettii (n = 6), B. multivorans (n = 2), Stenotrophomonas maltophilia (n = 3), and Pseudomonas aeruginosa (n = 11), were collected from environmental, clinical, and reference sources. In addition, 27 clinical isolates putatively identified as Burkholderia spp. were recovered from the sputum of Dutch CF patients. All isolates were used to evaluate the accuracy of two selective growth media, four systems for biochemical identification (API 20NE, Vitek GNI, Vitek NFC, and MicroScan), and three different PCR-based assays. The PCR assays amplify different parts of the ribosomal DNA operon, either alone or in combination with cleavage by various restriction enzymes (PCR-restriction fragment length polymorphism [RFLP] analysis). The best system for the biochemical identification of B. cepacia appeared to be the API 20NE test. None of the biochemical assays successfully grouped the B. gladioli strains. The PCR-RFLP method appeared to be the optimal method for accurate nucleic acid-mediated identification of the different Burkholderia spp. With this method, B. gladioli was also reliably classified in a separate group. For the laboratory diagnosis of B. cepacia, we recommend parallel cultures on blood agar medium and selective agar plates. Further identification of colonies with a Burkholderia phenotype should be performed with the API 20NE test. For final confirmation of species identities, PCR amplification of the small-subunit rRNA gene followed by RFLP analysis with various enzymes is recommended

    Comparative simulation study of colloidal gels and glasses

    Full text link
    Using computer simulations, we identify the mechanisms causing aggregation and structural arrest of colloidal suspensions interacting with a short-ranged attraction at moderate and high densities. Two different non-ergodicity transitions are observed. As the density is increased, a glass transition takes place, driven by excluded volume effects. In contrast, at moderate densities, gelation is approached as the strength of the attraction increases. At high density and interaction strength, both transitions merge, and a logarithmic decay in the correlation function is observed. All of these features are correctly predicted by mode coupling theory

    Evidence for Unusual Dynamical Arrest Scenario in Short Ranged Colloidal Systems

    Full text link
    Extensive molecular dynamics simulation studies of particles interacting via a short ranged attractive square-well (SW) potential are reported. The calculated loci of constant diffusion coefficient DD in the temperature-packing fraction plane show a re-entrant behavior, i.e. an increase of diffusivity on cooling, confirming an important part of the high volume-fraction dynamical-arrest scenario earlier predicted by theory for particles with short ranged potentials. The more efficient localization mechanism induced by the short range bonding provides, on average, additional free volume as compared to the hard-sphere case and results in faster dynamics.Comment: 4 pages, 3 figure

    Confirmation of Anomalous Dynamical Arrest in attractive colloids: a molecular dynamics study

    Full text link
    Previous theoretical, along with early simulation and experimental, studies have indicated that particles with a short-ranged attraction exhibit a range of new dynamical arrest phenomena. These include very pronounced reentrance in the dynamical arrest curve, a logarithmic singularity in the density correlation functions, and the existence of `attractive' and `repulsive' glasses. Here we carry out extensive molecular dynamics calculations on dense systems interacting via a square-well potential. This is one of the simplest systems with the required properties, and may be regarded as canonical for interpreting the phase diagram, and now also the dynamical arrest. We confirm the theoretical predictions for re-entrance, logarithmic singularity, and give the first direct evidence of the coexistence, independent of theory, of the two coexisting glasses. We now regard the previous predictions of these phenomena as having been established.Comment: 15 pages,15 figures; submitted to Phys. Rev.

    Nonergodicity transitions in colloidal suspensions with attractive interactions

    Full text link
    The colloidal gel and glass transitions are investigated using the idealized mode coupling theory (MCT) for model systems characterized by short-range attractive interactions. Results are presented for the adhesive hard sphere and hard core attractive Yukawa systems. According to MCT, the former system shows a critical glass transition concentration that increases significantly with introduction of a weak attraction. For the latter attractive Yukawa system, MCT predicts low temperature nonergodic states that extend to the critical and subcritical region. Several features of the MCT nonergodicity transition in this system agree qualitatively with experimental observations on the colloidal gel transition, suggesting that the gel transition is caused by a low temperature extension of the glass transition. The range of the attraction is shown to govern the way the glass transition line traverses the phase diagram relative to the critical point, analogous to findings for the fluid-solid freezing transition.Comment: 11 pages, 7 figures; to be published in Phys. Rev. E (1 May 1999
    • 

    corecore