81 research outputs found
Numerical simulation of nonunitary gravity-induced localization
The localization of a quantum state is numerically exhibited in a nonunitary
Newtonian model for gravity. It is shown that an unlocalized state of a ball of
mass just above the expected threshold of 10^11 proton masses evolves into a
mixed state with vanishing coherences above some localization lengths.Comment: RevTex, 6 figures available on request from the authors To appear in
Physica
Toy Model for a Relational Formulation of Quantum Theory
In the absence of an external frame of reference physical degrees of freedom
must describe relations between systems. Using a simple model, we investigate
how such a relational quantum theory naturally arises by promoting reference
systems to the status of dynamical entities. Our goal is to demonstrate using
elementary quantum theory how any quantum mechanical experiment admits a purely
relational description at a fundamental level, from which the original
"non-relational" theory emerges in a semi-classical limit. According to this
thesis, the non-relational theory is therefore an approximation of the
fundamental relational theory. We propose four simple rules that can be used to
translate an "orthodox" quantum mechanical description into a relational
description, independent of an external spacial reference frame or clock. The
techniques used to construct these relational theories are motivated by a
Bayesian approach to quantum mechanics, and rely on the noiseless subsystem
method of quantum information science used to protect quantum states against
undesired noise. The relational theory naturally predicts a fundamental
decoherence mechanism, so an arrow of time emerges from a time-symmetric
theory. Moreover, there is no need for a "collapse of the wave packet" in our
model: the probability interpretation is only applied to diagonal density
operators. Finally, the physical states of the relational theory can be
described in terms of "spin networks" introduced by Penrose as a combinatorial
description of geometry, and widely studied in the loop formulation of quantum
gravity. Thus, our simple bottom-up approach (starting from the semi-classical
limit to derive the fully relational quantum theory) may offer interesting
insights on the low energy limit of quantum gravity.Comment: References added, extended discussio
Proposal for an experimental test of the many-worlds interpretation of quantum mechanics
The many-worlds interpretation of quantum mechanics predicts the formation of
distinct parallel worlds as a result of a quantum mechanical measurement.
Communication among these parallel worlds would experimentally rule out
alternatives to this interpretation. A procedure for ``interworld'' exchange of
information and energy, using only state of the art quantum optical equipment,
is described. A single ion is isolated from its environment in an ion trap.
Then a quantum mechanical measurement with two discrete outcomes is performed
on another system, resulting in the formation of two parallel worlds. Depending
on the outcome of this measurement the ion is excited from only one of the
parallel worlds before the ion decoheres through its interaction with the
environment. A detection of this excitation in the other parallel world is
direct evidence for the many-worlds interpretation. This method could have
important practical applications in physics and beyond.Comment: 17 pages, standard LaTex, no pictures, comments welcome, revised
version corrects typing error in mixing tim
Radiation from the extremal black holes
The radiation from extreme Reissner-Nordstr\"{o}m black holes is computed by
explicitly considering the collapse of a spherical charged shell. No neutral
scalar radiation is found but there is emission of charged particles, provided
the charge to mass ratio be different from one. The absence of thermal effects
is in accord with the predictions of the euclidean theory but since the body
emits charged particles the entropy issue is not the same as for eternal
extreme black holes.Comment: 4 pages, LaTex, no figure
Relativistic quantum clocks
The conflict between quantum theory and the theory of relativity is
exemplified in their treatment of time. We examine the ways in which their
conceptions differ, and describe a semiclassical clock model combining elements
of both theories. The results obtained with this clock model in flat spacetime
are reviewed, and the problem of generalizing the model to curved spacetime is
discussed, before briefly describing an experimental setup which could be used
to test of the model. Taking an operationalist view, where time is that which
is measured by a clock, we discuss the conclusions that can be drawn from these
results, and what clues they contain for a full quantum relativistic theory of
time.Comment: 12 pages, 4 figures. Invited contribution for the proceedings for
"Workshop on Time in Physics" Zurich 201
Lorentz breaking Effective Field Theory and observational tests
Analogue models of gravity have provided an experimentally realizable test
field for our ideas on quantum field theory in curved spacetimes but they have
also inspired the investigation of possible departures from exact Lorentz
invariance at microscopic scales. In this role they have joined, and sometime
anticipated, several quantum gravity models characterized by Lorentz breaking
phenomenology. A crucial difference between these speculations and other ones
associated to quantum gravity scenarios, is the possibility to carry out
observational and experimental tests which have nowadays led to a broad range
of constraints on departures from Lorentz invariance. We shall review here the
effective field theory approach to Lorentz breaking in the matter sector,
present the constraints provided by the available observations and finally
discuss the implications of the persisting uncertainty on the composition of
the ultra high energy cosmic rays for the constraints on the higher order,
analogue gravity inspired, Lorentz violations.Comment: 47 pages, 4 figures. Lecture Notes for the IX SIGRAV School on
"Analogue Gravity", Como (Italy), May 2011. V.3. Typo corrected, references
adde
Environment-Induced Decoherence and the Transition From Quantum to Classical
We study dynamics of quantum open systems, paying special attention to those
aspects of their evolution which are relevant to the transition from quantum to
classical. We begin with a discussion of the conditional dynamics of simple
systems. The resulting models are straightforward but suffice to illustrate
basic physical ideas behind quantum measurements and decoherence. To discuss
decoherence and environment-induced superselection einselection in a more
general setting, we sketch perturbative as well as exact derivations of several
master equations valid for various systems. Using these equations we study
einselection employing the general strategy of the predictability sieve.
Assumptions that are usually made in the discussion of decoherence are
critically reexamined along with the ``standard lore'' to which they lead.
Restoration of quantum-classical correspondence in systems that are classically
chaotic is discussed. The dynamical second law -it is shown- can be traced to
the same phenomena that allow for the restoration of the correspondence
principle in decohering chaotic systems (where it is otherwise lost on a very
short time-scale). Quantum error correction is discussed as an example of an
anti-decoherence strategy. Implications of decoherence and einselection for the
interpretation of quantum theory are briefly pointed out.Comment: 80 pages, 7 figures included, Lectures given by both authors at the
72nd Les Houches Summer School on "Coherent Matter Waves", July-August 199
The importance of quantum decoherence in brain processes
Based on a calculation of neural decoherence rates, we argue that that the
degrees of freedom of the human brain that relate to cognitive processes should
be thought of as a classical rather than quantum system, i.e., that there is
nothing fundamentally wrong with the current classical approach to neural
network simulations. We find that the decoherence timescales ~10^{-13}-10^{-20}
seconds are typically much shorter than the relevant dynamical timescales
(~0.001-0.1 seconds), both for regular neuron firing and for kink-like
polarization excitations in microtubules. This conclusion disagrees with
suggestions by Penrose and others that the brain acts as a quantum computer,
and that quantum coherence is related to consciousness in a fundamental way.Comment: Minor changes to match accepted PRE version. 15 pages with 5 figs
included. Color figures and links at
http://www.physics.upenn.edu/~max/brain.html or from [email protected].
Physical Review E, in pres
Pathologic polyglutamine aggregation begins with a self-poisoning polymer crystal
A long-standing goal of amyloid research has been to characterize the structural basis of the rate-determining nucleating event. However, the ephemeral nature of nucleation has made this goal unachievable with existing biochemistry, structural biology, and computational approaches. Here, we addressed that limitation for polyglutamine (polyQ), a polypeptide sequence that causes Huntington’s and other amyloid-associated neurodegenerative diseases when its length exceeds a characteristic threshold. To identify essential features of the polyQ amyloid nucleus, we used a direct intracellular reporter of self-association to quantify frequencies of amyloid appearance as a function of concentration, conformational templates, and rational polyQ sequence permutations. We found that nucleation of pathologically expanded polyQ involves segments of three glutamine (Q) residues at every other position. We demonstrate using molecular simulations that this pattern encodes a four-stranded steric zipper with interdigitated Q side chains. Once formed, the zipper poisoned its own growth by engaging naive polypeptides on orthogonal faces, in a fashion characteristic of polymer crystals with intramolecular nuclei. We further show that self-poisoning can be exploited to block amyloid formation, by genetically oligomerizing polyQ prior to nucleation. By uncovering the physical nature of the rate-limiting event for polyQ aggregation in cells, our findings elucidate the molecular etiology of polyQ diseases
- …