973 research outputs found

    In vivo imaging of chronic active lesions in multiple sclerosis

    Get PDF
    New clinical activity in multiple sclerosis (MS) is often accompanied by acute inflammation which subsides. However, there is growing evidence that a substantial proportion of lesions remain active well beyond the acute phase. Chronic active lesions are most frequently found in progressive MS and are characterised by a border of inflammation associated with iron-enriched cells, leading to ongoing tissue injury. Identifying imaging markers for chronic active lesions in vivo are thus a major research goal. We reviewed the literature on imaging of chronic active lesion in MS, focussing on 'slowly expanding lesions' (SELs), detected by volumetric longitudinal magnetic resonance imaging (MRI) and 'rim-positive' lesions, identified by susceptibility iron-sensitive MRI. Both SELs and rim-positive lesions have been found to be prognostically relevant to future disability. Little is known about the co-occurrence of rims around SELs and their inter-relationship with other emerging techniques such as dynamic contrast enhancement (DCE) and positron emission tomography (PET)

    Openness in Teachers' Digital Competence Frameworks: Looking for the Open Educator

    Get PDF
    There has been a wide variety of definitions of digital competence, from early narrow and technology-focused explanations to more recent attempts , such as the one by Ferrari (2013), who describes it as a complex concept encompassing a wide set of skills, attitudes and knowledge when performing tasks with Information and Communication Technologies (ICT). Furthermore, there have been various different attempts to describe teachers’ digital competence, as the literature review by McGarr and McDonagh (2019) demonstrates. These authors evidence that models either depict teachers’ digital competence in diverse taxonomies of areas and dimensions, or as a hierarchical and progressive evolution from low to high levels of awareness and ability. They observe that openness does not have a presence in most of the taxonomic models and thus they propose openness as a dimension of their four-part model, under the label of attitudes. In this current work, we analyse international and national teachers’ digital competence frameworks and review whether openness has been included in them, and, if so, how it is described. In the case of frameworks that offer a model of increasing performance, we observe the levels at which open-related concepts appear. An initial review of the frameworks by the European Commission, UNESCO, ISTE (US) and INTEF (Spain) indicates that ‘openness’ typically does not constitute a dimension in itself and tends to appear at intermediate and high levels of teachers’ digital competence, except from the UNESCO framework, where access to OER (Open Educational Resources) is present already at the lowest level. In this paper we reflect on the need for international and national frameworks of teacher professional development to boost openness: in particular, for open educational practices to be included at lower levels of teachers’ pre-service and in-service professional education. We argue that becoming an open educator requires both the development of the dispositions associated with reflective practice and the confidence to challenge neo-liberal educational assumptions in order to embrace participatory, equitable and open educational practices from the early stages of the development of teachers’ digital competence

    Axon diameter distribution influences diffusion-derived axonal density estimation in the human spinal cord: in silico and in vivo evidence

    Get PDF

    Spinal cord atrophy as a primary outcome measure in phase II trials of progressive multiple sclerosis (vol 23, pg 1, 2017)

    Get PDF
    Cawley N, Tur C, Prados F, et al. Spinal cord atrophy as a primary outcome measure in phase II trials of progressive multiple sclerosis. Mult Scler. Epub ahead of print 18 May 2017. DOI: 10.1177/1352458517709954. On page 9 of this article, the Declaration of Conflicting Interests and Funding statements were incorrect. The correct declarations are shown below

    Parametric model for the simulation of the railway catenary system static equilibrium problem

    Full text link
    Dynamic simulations of pantograph catenary interaction are nowadays essential for improving the performance of railway locomotives, by achieving better current collection at higher speeds and lower wear of thecollecting parts.The first step in performing these simulations is to compute the static equilibrium of the overhead line.The initial dropper lengths play an important role in hanging the contact wire at an appropriate height. From a classical point of view, if one wants to obtain the static equilibrium configuration of the system for different combinations of dropper lengths, one static pro- blem must be solved for each combination of lengths, which involves a prohibitive computational cost. In this paper we propose a parametric model of the catenary, including the undeformed dropper lengths as extra-coordinates of the problem. This multidimensional problem is efficiently solved by means of the Proper Generalized Decomposition (PGD) technique, avoiding the curse of dimensionality issue. The capabilities and performance of the proposed method are shown by numerical examples.The authors would like to acknowledge the financial support of the FPU program offered by the Ministerio de Educacion, Cultura y Deporte under Grant number FPU13/04191. The funding from Universitat Politecnica de Valencia and Generalitat Valenciana (PROMETEO/2012/023) are also acknowledged.Gregori Verdú, S.; Tur Valiente, M.; Nadal, E.; Fuenmayor Fernández, FJ.; Chinesta, F. (2016). Parametric model for the simulation of the railway catenary system static equilibrium problem. Finite Elements in Analysis and Design. 115:21-32. https://doi.org/10.1016/j.finel.2016.02.007S213211

    The Influence of Quadrature Errors on Isogeometric Mortar Methods

    Full text link
    Mortar methods have recently been shown to be well suited for isogeometric analysis. We review the recent mathematical analysis and then investigate the variational crime introduced by quadrature formulas for the coupling integrals. Motivated by finite element observations, we consider a quadrature rule purely based on the slave mesh as well as a method using quadrature rules based on the slave mesh and on the master mesh, resulting in a non-symmetric saddle point problem. While in the first case reduced convergence rates can be observed, in the second case the influence of the variational crime is less significant

    Mode-division-multiplexing of multiple Bessel-Gaussian beams carrying orbital-angular-momentum for obstruction-tolerant free-space optical and millimetre-wave communication links

    Get PDF
    We experimentally investigate the potential of using ‘self-healing’ Bessel-Gaussian beams carrying orbital-angular-momentum to overcome limitations in obstructed free-space optical and 28-GHz millimetre-wave communication links. We multiplex and transmit two beams (l = +1 and +3) over 1.4 metres in both the optical and millimetre-wave domains. Each optical beam carried 50-Gbaud quadrature-phase-shift-keyed data, and each millimetre-wave beam carried 1-Gbaud 16-quadrature-amplitude-modulated data. In both types of links, opaque disks of different sizes are used to obstruct the beams at different transverse positions. We observe self-healing after the obstructions, and assess crosstalk and power penalty when data is transmitted. Moreover, we show that Bessel-Gaussian orbital-angular-momentum beams are more tolerant to obstructions than non-Bessel orbital-angular-momentum beams. For example, when obstructions that are 1 and 0.44 the size of the l = +1 beam, are placed at beam centre, optical and millimetre-wave Bessel-Gaussian beams show ~6 dB and ~8 dB reduction in crosstalk, respectively

    Ongoing microstructural changes in the cervical cord underpin disability progression in early primary progressive multiple sclerosis

    Get PDF
    Background: Pathology in the spinal cord of patients with primary progressive multiple sclerosis (PPMS) contributes to disability progression. We previously reported abnormal Q-space imaging (QSI)-derived indices in the spinal cord at baseline in patients with early PPMS, suggesting early neurodegeneration. / Objective: The aim was to investigate whether changes in spinal cord QSI over 3 years in the same cohort are associated with disability progression and if baseline QSI metrics predict clinical outcome. / Methods: Twenty-three PPMS patients and 23 healthy controls recruited at baseline were invited for follow-up cervical cord 3T magnetic resonance imaging (MRI) and clinical assessment after 1 year and 3 years. Cord cross-sectional area (CSA) and QSI measures were obtained, together with standard brain MRI measures. Mixed-effect models assessed MRI changes over time and their association with clinical changes. Linear regression identified baseline MRI indices associated with disability at 3 years. / Results: Over time, patients deteriorated clinically and showed an increase in cord QSI indices of perpendicular diffusivity that was associated with disability worsening, independently of the decrease in CSA. Higher perpendicular diffusivity and lower CSA at baseline predicted worse disability at 3 years. Conclusion: Increasing spinal cord perpendicular diffusivity may indicate ongoing neurodegeneration, which underpins disability progression in PPMS, independently of the development of spinal cord atrophy

    Fast simulation of the pantograph-catenary dynamic interaction

    Full text link
    Simulation of the pantograph-catenary dynamic interaction has now become a useful tool for designing and optimizing the system. In order to perform accurate simulations, including system non-linearities, the Finite Element Method is commonly employed combined with a time integration scheme, even though the computational time required may be longer than with the use of other simpler approaches. In this paper we propose a two-stage methodology (Offline/Online) which notably reduces the computational cost without any loss in accuracy and makes it possible to successfully carry out very efficient optimizations or even Hardware in the Loop simulations with real-time requirements.The authors would like to acknowledge the financial support received from the FPU program offered by the Ministerio de Educacion, Cultura y Deporte under grant number (FPU13/04191), and also funding from the Universitat Politecnica de Valencia and the Generalitat Valenciana (PROMETEO/2016/007).Gregori Verdú, S.; Tur Valiente, M.; Nadal Soriano, E.; Aguado, J.; Fuenmayor Fernández, FJ.; Chinesta, F. (2017). Fast simulation of the pantograph-catenary dynamic interaction. Finite Elements in Analysis and Design. 129:1-13. https://doi.org/10.1016/j.finel.2017.01.007S11312
    • …
    corecore