125 research outputs found

    17O NMR study of the intrinsic magnetic susceptibility and spin dynamics of the quantum kagome antiferromagnet ZnCu3(OH)6Cl2

    Get PDF
    We report through 17O NMR, an unambiguous local determination of the intrinsic kagome lattice spin susceptibility as well as that created around non-magnetic defects issued from natural Zn/ Cu exchange in the S=1/2 (Cu2+) herbertsmithite ZnCu3(OH)6Cl2 compound. The issue of a singlet-triplet gap is addressed. The magnetic response around a defect is found to markedly differ from that observed in non-frustrated antiferromagnetic materials. Finally, we discuss our relaxation measurements in the light of Cu and Cl NMR data [cond-mat 070314] and suggest a flat q-dependence of the excitations.Comment: Accepted for publication in Phys. Rev. Lett., 3 jan. 2008 Figure 1 has been modified to include a two-components fit of the 17O NMR spectru

    Ground state of the Kagome-like S=1/2 antiferromagnet, Volborthite Cu3V2O7(OH)2.2H2O

    Full text link
    Volborthite compound is one of the very few realizations of S=1/2 quantum spins on a highly frustrated kagome-like lattice. Low-T SQUID measurements reveal a broad magnetic transition below 2K which is further confirmed by a peak in the 51V nuclear spin relaxation rate (1/T1) at 1.4K±\pm0.2K. Through 51V NMR, the ground state (GS) appears to be a mixture of different spin configurations, among which 20% correspond to a well defined short range order, possibly of the 3×3\sqrt{3} \times \sqrt{3} type. While the freezing involve all the Cu2+^{2+} spins, only 40% of the copper moment is actually frozen which suggests that quantum fluctuations strongly renormalize the GS.Comment: 4 pages, 4 figures, to appear in PR

    Dzyaloshinsky-Moriya Anisotropy in the Spin-1/2 Kagom\'e Compound ZnCu3_{3}(OH)6_{6}Cl2_{2}

    Get PDF
    We report the determination of the Dzyaloshinsky-Moriya interaction, the dominant magnetic anisotropy term in the \kagome spin-1/2 compound {\herbert}. Based on the analysis of the high-temperature electron spin resonance (ESR) spectra, we find its main component ∣Dz∣=15(1)|D_z|=15(1) K to be perpendicular to the \kagome planes. Through the temperature dependent ESR line-width we observe a building up of nearest-neighbor spin-spin correlations below ∼\sim150 K.Comment: 4 pages, 3 figures, minor modification

    Field-Induced Freezing of a Quantum Spin Liquid on the Kagome Lattice

    Get PDF
    We report 17O NMR measurements in the S=1/2 Cu2+ kagome antiferromagnet Herbertsmithite ZnCu3(OH)6Cl2 down to 45mK in magnetic fields ranging from 2T to 12T. While Herbertsmithite displays a gapless spin-liquid behavior in zero field, we uncover an instability toward a spin-solid phase at sub-kelvin temperature induced by an applied magnetic field. The latter phase shows largely suppressed moments \lesssim 0.1\muB and gapped excitations. The H-T phase diagram suggests the existence of a quantum critical point at the small but finite magnetic field mu0 Hc=1.55(25)T. We discuss this finding in light of the perturbative Dzyaloshinskii-Moriya interaction which was theoretically proposed to sustain a quantum critical regime for the quantum kagome Heisenberg antiferromagnet model.Comment: One link added for supplemental materials. Published in : Phys. Rev. Lett. 107, 237201 (2011

    Ab initio investigation of VOSeO3, a spin gap system with coupled spin dimers

    Full text link
    Motivated by an early experimental study of VOSeO3, which suggested that it is a quasi-2D system of weakly coupled spin dimers with a small spin gap, we have investigated the electronic structure of this material via density-functional calculations. These ab initio results indicate that the system is better thought of as an alternating spin-1/2 chain with moderate interchain interactions, an analog of (VO)2P2O7. The potential interest of this system for studies in high magnetic field given the presumably small value of the spin gap is emphasized.Comment: 4 pages, 5 figure
    • …
    corecore