214 research outputs found

    Wavenumber dependence of structural alpha relaxation in a molecular liquid

    Full text link
    Structural alpha relaxation in liquid orthoterphenyl is studied by means of coherent neutron time-of-flight and backscattering spectroscopy over a large temperature range. Not only amplitude and relaxation time but also the spectral line shape show a significant variation with wavenumber. As expected from mode coupling theory, these variations are correlated with the static structure factor. Even far above the melting point, alpha relaxation remains non-exponential.Comment: 6 pages of LaTeX, 4 figure

    Fast relaxation in a fragile liquid under pressure

    Full text link
    The incoherent dynamic structure factor of ortho-terphenyl has been measured by neutron time-of-flight and backscattering technique in the pressure range from 0.1 MPa to 240 MPa for temperatures between 301 K and 335 K. Tagged-particle correlations in the compressed liquid decay in two steps. The alpha-relaxation lineshape is independent of pressure, and the relaxation time proportional to viscosity. A kink in the amplitude f_Q(P) reveals the onset of beta relaxation. The beta-relaxation regime can be described by the mode-coupling scaling function; amplitudes and time scales allow a consistent determination of the critical pressure P_c(T). alpha and beta relaxation depend in the same way on the thermodynamic state; close to the mode-coupling cross-over, this dependence can be parametrised by an effective coupling Gamma ~ n*T**{-1/4}.Comment: 4 Pages of RevTeX, 4 figures (submitted to Physical Review Letters

    Test of the semischematic model for a liquid of linear molecules

    Full text link
    We apply to a liquid of linear molecules the semischematic mode-coupling model, previously introduced to describe the center of mass (COM) slow dynamics of a network-forming molecular liquid. We compare the theoretical predictions and numerical results from a molecular dynamics simulation, both for the time and the wave-vector dependence of the COM density-density correlation function. We discuss the relationship between the presented analysis and the results from an approximate solution of the equations from molecular mode-coupling theory [R. Schilling and T. Scheidsteger, Phys. Rev. E 56 2932 (1997)].Comment: Revtex, 10 pages, 4 figure

    Molecular dynamics simulation of the fragile glass former ortho-terphenyl: a flexible molecule model

    Full text link
    We present a realistic model of the fragile glass former orthoterphenyl and the results of extensive molecular dynamics simulations in which we investigated its basic static and dynamic properties. In this model the internal molecular interactions between the three rigid phenyl rings are described by a set of force constants, including harmonic and anharmonic terms; the interactions among different molecules are described by Lennard-Jones site-site potentials. Self-diffusion properties are discussed in detail together with the temperature and momentum dependencies of the self-intermediate scattering function. The simulation data are compared with existing experimental results and with the main predictions of the Mode Coupling Theory.Comment: 20 pages and 28 postscript figure

    Crystal-like high frequency phonons in the amorphous phases of solid water

    Full text link
    The high frequency dynamics of low- (LDA) and high-density amorphous-ice (HDA) and of cubic ice (I_c) has been measured by inelastic X-ray Scattering (IXS) in the 1-15 nm^{-1} momentum transfer (Q) range. Sharp phonon-like excitations are observed, and the longitudinal acoustic branch is identified up to Q = 8nm^{-1} in LDA and I_c and up to 5nm^{-1} in HDA. The narrow width of these excitations is in sharp contrast with the broad features observed in all amorphous systems studied so far. The "crystal-like" behavior of amorphous ices, therefore, implies a considerable reduction in the number of decay channels available to sound-like excitations which is assimilated to low local disorder.Comment: 4 pages, 3 figure

    Ice XII in its second regime of metastability

    Full text link
    We present neutron powder diffraction results which give unambiguous evidence for the formation of the recently identified new crystalline ice phase[Lobban et al.,Nature, 391, 268, (1998)], labeled ice XII, at completely different conditions. Ice XII is produced here by compressing hexagonal ice I_h at T = 77, 100, 140 and 160 K up to 1.8 GPa. It can be maintained at ambient pressure in the temperature range 1.5 < T < 135 K. High resolution diffraction is carried out at T = 1.5 K and ambient pressure on ice XII and accurate structural properties are obtained from Rietveld refinement. At T = 140 and 160 K additionally ice III/IX is formed. The increasing amount of ice III/IX with increasing temperature gives an upper limit of T ~ 150 K for the successful formation of ice XII with the presented procedure.Comment: 3 Pages of RevTeX, 3 tables, 3 figures (submitted to Physical Review Letters

    Dynamics in a supercooled molecular liquid: Theory and Simulations

    Full text link
    We report extensive simulations of liquid supercooled states for a simple three-sites molecular model, introduced by Lewis and Wahnstr"om [L. J. Lewis and G. Wahnstr"om, Phys. Rev. E 50, 3865 (1994)] to mimic the behavior of ortho-terphenyl. The large system size and the long simulation length allow to calculate very precisely --- in a large q-vector range --- self and collective correlation functions, providing a clean and simple reference model for theoretical descriptions of molecular liquids in supercooled states. The time and wavevector dependence of the site-site correlation functions are compared with detailed predictions based on ideal mode-coupling theory, neglecting the molecular constraints. Except for the wavevector region where the dynamics is controlled by the center of mass (around 9 nm-1), the theoretical predictions compare very well with the simulation data.

    Neutron scattering and molecular correlations in a supercooled liquid

    Full text link
    We show that the intermediate scattering function Sn(q,t)S_n(q,t) for neutron scattering (ns) can be expanded naturely with respect to a set of molecular correlation functions that give a complete description of the translational and orientational two-point correlations in the liquid. The general properties of this expansion are discussed with special focus on the qq-dependence and hints for a (partial) determination of the molecular correlation functions from neutron scattering results are given. The resulting representation of the static structure factor Sn(q)S_n(q) is studied in detail for a model system using data from a molecular dynamics simulation of a supercooled liquid of rigid diatomic molecules. The comparison between the exact result for Sn(q)S_n(q) and different approximations that result from a truncation of the series representation demonstrates its good convergence for the given model system. On the other hand it shows explicitly that the coupling between translational (TDOF) and orientational degrees of freedom (ODOF) of each molecule and rotational motion of different molecules can not be neglected in the supercooled regime.Further we report the existence of a prepeak in the ns-static structure factor of the examined fragile glassformer, demonstrating that prepeaks can occur even in the most simple molecular liquids. Besides examining the dependence of the prepeak on the scattering length and the temperature we use the expansion of Sn(q)S_n(q) into molecular correlation functions to point out intermediate range orientational order as its principle origin.Comment: 13 pages, 7 figure

    Asymptotic laws for tagged-particle motion in glassy systems

    Full text link
    Within the mode-coupling theory for structural relaxation in simple systems the asymptotic laws and their leading-asymptotic correction formulas are derived for the motion of a tagged particle near a glass-transition singularity. These analytic results are compared with numerical ones of the equations of motion evaluated for a tagged hard sphere moving in a hard-sphere system. It is found that the long-time part of the two-step relaxation process for the mean-squared displacement can be characterized by the α\alpha -relaxation-scaling law and von Schweidler's power-law decay while the critical-decay regime is dominated by the corrections to the leading power-law behavior. For parameters of interest for the interpretations of experimental data, the corrections to the leading asymptotic laws for the non-Gaussian parameter are found to be so large that the leading asymptotic results are altered qualitatively by the corrections. Results for the non-Gaussian parameter are shown to follow qualitatively the findings reported in the molecular-dynamics-simulations work by Kob and Andersen [Phys. Rev. E 51, 4626 (1995)]

    Atomic Transport in Dense, Multi-Component Metallic Liquids

    Full text link
    Pd43Ni10Cu27P0 has been investigated in its equilibrium liquid state with incoherent, inelastic neutron scattering. As compared to simple liquids, liquid PdNiCuP is characterized by a dense packing with a packing fraction above 0.5. The intermediate scattering function exhibits a fast relaxation process that precedes structural relaxation. Structural relaxation obeys a time-temperature superposition that extends over a temperature range of 540K. The mode-coupling theory of the liquid to glass transition (MCT) gives a consistent description of the dynamics which governs the mass transport in liquid PdNiCuP alloys. MCT scaling laws extrapolate to a critical temperature Tc at about 20% below the liquidus temperature. Diffusivities derived from the mean relaxation times compare well with Co diffusivities from recent tracer diffusion measurements and diffsuivities calculated from viscosity via the Stokes-Einstein relation. In contrast to simple metallic liquids, the atomic transport in dense, liquid PdNiCuP is characterized by a drastical slowing down of dynamics on cooling, a q^{-2} dependence of the mean relaxation times at intermediate q and a vanishing isotope effect as a result of a highly collective transport mechanism. At temperatures as high as 2Tc diffusion in liquid PdNiCuP is as fast as in simple liquids at the melting point. However, the difference in the underlying atomic transport mechanism indicates that the diffusion mechanism in liquids is not controlled by the value of the diffusivity but rather by that of the packing fraction
    • …
    corecore