988 research outputs found

    Line-of-Sight Reddening Predictions: Zero Points, Accuracies, the Interstellar Medium, and the Stellar Populations of Elliptical Galaxies

    Full text link
    Revised (B-V)_0-Mg_2 data for 402 elliptical galaxies are given to test reddening predictions which can also tell us both what the intrinsic errors are in this relationship among gE galaxy stellar populations, as well as details of nearby structure in the interstellar medium (ISM) of our Galaxy and of the intrinsic errors in reddening predictions. Using least-squares fits, the explicit 1-sigma errors in the Burstein-Heiles (BH) and the Schlegel et al. (IR) predicted reddenings are calculated, as well as the 1-sigma observational error in the (B-V)_0-Mg_2 for gE galaxies. It is found that, in directions with E(B-V)<0.100 mag (where most of these galaxies lie), 1-sigma errors in the IR reddening predictions are 0.006 to 0.009 in E(B-V) mag, those for BH reddening prediction are 0.011 mag, and the 1-sigma agreement between the two reddening predictions is 0.007 mag. IR predictions have an accuracy of 0.010-0.011 mag in directions with E(B-V)>= 0.100 mag, significantly better than those of the BH predictions (0.024-0.025). Gas-to-dust variations that vary by a factor of 3, both high and low, exist along many lines-of-sight in our Galaxy. The approx 0.02 higher reddening zero point in E(B-V) previously determined by Schlegel et al. is confirmed, primarily at the Galactic poles. Despite this, both methods also predict many directions with E(B-V)<0.015 mag. Independent evidence of reddening at the North Galactic pole is reviewed, with the conclusion that there still exists directions at the NGP that have E(B-V)<<0.01. Two lines of evidence suggest that IR reddenings are overpredicted in directions with high gas-to-dust ratios. As high gas-to-dust directions in the ISM also include the Galactic poles, this overprediction is the likely cause of the E(B-V) = 0.02 mag larger IR reddening zero point.Comment: 5 figure

    Towards reliable diagnostics of prostate cancer via breath

    Get PDF
    Early detection of cancer is a key ingredient for saving many lives. Unfortunately, cancers of the urogenital system are difficult to detect at early stage. The existing noninvasive diagnostics of prostate cancer (PCa) suffer from low accuracy (< 70%) even at advanced stages. In an attempt to improve the accuracy, a small breath study of 63 volunteers representing three groups: (1) of 19 healthy, (2) 28 with PCa, (3) with 8 kidney cancer (KC) and 8 bladder cancer (BC) was performed. Ultrabroadband mid-infrared Fourier absorption spectroscopy revealed eight spectral ranges (SRs) that differentiate the groups. The resulting accuracies of supervised analyses exceeded 95% for four SRs in distinguishing (1) vs (2), three for (1) vs (3) and four SRs for (1) vs (2) + (3). The SRs were then attributed to volatile metabolites. Their origin and involvement in urogenital carcinogenesis are discussed

    A molecular insight into algal-oomycete warfare: cDNA analysis of <i>Ectocarpus siliculosus</i> infected with the basal oomycete <i>Eurychasma dicksonii</i>

    Get PDF
    Brown algae are the predominant primary producers in coastal habitats, and like land plants are subject to disease and parasitism. Eurychasma dicksonii is an abundant, and probably cosmopolitan, obligate biotrophic oomycete pathogen of marine brown algae. Oomycetes (or water moulds) are pathogenic or saprophytic non-photosynthetic Stramenopiles, mostly known for causing devastating agricultural and aquacultural diseases. Whilst molecular knowledge is restricted to crop pathogens, pathogenic oomycetes actually infect hosts from most eukaryotic lineages. Molecular evidence indicates that Eu. dicksonii belongs to the most early-branching oomycete clade known so far. Therefore Eu. dicksonii is of considerable interest due to its presumed environmental impact and phylogenetic position. Here we report the first large scale functional molecular data acquired on the most basal oomycete to date. 9873 unigenes, totalling over 3.5Mb of sequence data, were produced from Sanger-sequenced and pyrosequenced EST libraries of infected Ectocarpus siliculosus. 6787 unigenes (70%) were of algal origin, and 3086 (30%) oomycete origin. 57% of Eu. dicksonii sequences had no similarity to published sequence data, indicating that this dataset is largely unique. We were unable to positively identify sequences belonging to the RXLR and CRN groups of oomycete effectors identified in higher oomycetes, however we uncovered other unique pathogenicity factors. These included putative algal cell wall degrading enzymes, cell surface proteins, and cyclophilin-like proteins. A first look at the host response to infection has also revealed movement of the host nucleus to the site of infection as well as expression of genes responsible for strengthening the cell wall, and secretion of proteins such as protease inhibitors. We also found evidence of transcriptional reprogramming of E. siliculosus transposable elements and of a viral gene inserted in the host genome

    MIPS: The Multiband Imaging Photometer for SIRTF

    Get PDF
    The Multiband Imaging Photometer for SIRTF (MIPS) is to be designed to reach as closely as possible the fundamental sensitivity and angular resolution limits for SIRTF over the 3 to 700μm spectral region. It will use high performance photoconductive detectors from 3 to 200μm with integrating JFET amplifiers. From 200 to 700μm, the MIPS will use a bolometer cooled by an adiabatic demagnetization refrigerator. Over much of its operating range, the MIPS will make possible observations at and beyond the conventional Rayleigh diffraction limit of angular resolution

    In-situ electron-beam lithography of deterministic single-quantum-dot mesa-structures using low-temperature cathodoluminescence spectroscopy

    Get PDF
    We report on the deterministic fabrication of sub-um mesa structures containing single quantum dots by in-situ electron-beam lithography. The fabrication method is based on a two-step lithography process using a low-temperature cathodoluminescence (CL) spectroscopy setup. In the first step the position and spectral features of single InGaAs quantum dots (QDs) are detected by CL. Then circular sub-um mesa-structures are exactly defined by high-resolution electron-beam lithography and subsequent etching in the second step. CL spectroscopy and micro-photoluminscence spectroscopy demonstrate the high optical quality of the single-QD mesa-structures with emission linewidths below 15 ueV and g(2)(0) = 0.04. Our lithography method allows for an alignment precision better than 100 nm which paves the way for a fully-deterministic device technology using in-situ CL lithography.Comment: 4 pages, 4 figure

    Study of Interplanetary Magnetic Field with Ground State Alignment

    Full text link
    We demonstrate a new way of studying interplanetary magnetic field -- Ground State Alignment (GSA). Instead of sending thousands of space probes, GSA allows magnetic mapping with any ground telescope facilities equipped with spectropolarimeter. The polarization of spectral lines that are pumped by the anisotropic radiation from the Sun is influenced by the magnetic realignment, which happens for magnetic field (<1G). As a result, the linear polarization becomes an excellent tracer of the embedded magnetic field. The method is illustrated by our synthetic observations of the Jupiter's Io and comet Halley. Polarization at each point was constructed according to the local magnetic field detected by spacecrafts. Both spatial and temporal variations of turbulent magnetic field can be traced with this technique as well. The influence of magnetic field on the polarization of scattered light is discussed in detail. For remote regions like the IBEX ribbons discovered at the boundary of interstellar medium, GSA provides a unique diagnostics of magnetic field.Comment: 11 pages, 19 figures, published in Astrophysics and Space Scienc
    • …
    corecore