362 research outputs found

    The gravitational energy-momentum flux

    Full text link
    We present a continuity equation for the gravitational energy-momentum, which is obtained in the framework of the teleparallel equivalent of general relativity. From this equation it follows a general definition for the gravitational energy-momentum flux. This definition is investigated in the context of plane waves and of cylindrical Einstein-Rosen waves. We obtain the well known value for the energy flux of plane gravitational waves, and conclude that the latter exhibit features similar to plane electromagnetic waves.Comment: 20 pages, latex file, no figures, two references added, accepted for publication in Class. Quantum Gravit

    Dynamics and stability of the Godel universe

    Full text link
    We use covariant techniques to describe the properties of the Godel universe and then consider its linear response to a variety of perturbations. Against matter aggregations, we find that the stability of the Godel model depends primarily upon the presence of gradients in the centrifugal energy, and secondarily on the equation of state of the fluid. The latter dictates the behaviour of the model when dealing with homogeneous perturbations. The vorticity of the perturbed Godel model is found to evolve as in almost-FRW spacetimes, with some additional directional effects due to shape distortions. We also consider gravitational-wave perturbations by investigating the evolution of the magnetic Weyl component. This tensor obeys a simple plane-wave equation, which argues for the neutral stability of the Godel model against linear gravity-wave distortions. The implications of the background rotation for scalar-field Godel cosmologies are also discussed.Comment: Revised version, to match paper published in Class. Quantum Gra

    Hidden symmetries in the asymmetric exclusion process

    Full text link
    We present a spectral study of the evolution matrix of the totally asymmetric exclusion process on a ring at half filling. The natural symmetries (translation, charge conjugation combined with reflection) predict only two fold degeneracies. However, we have found that degeneracies of higher order also exist and, as the system size increases, higher and higher orders appear. These degeneracies become generic in the limit of very large systems. This behaviour can be explained by the Bethe Ansatz and suggests the presence of hidden symmetries in the model. Keywords: ASEP, Markov matrix, symmetries, spectral degeneracies, Bethe Ansatz.Comment: 16 page

    Effect of atomic transfer on the decay of a Bose-Einstein condensate

    Full text link
    We present a model describing the decay of a Bose-Einstein condensate, which assumes the system to remain in thermal equilibrium during the decay. We show that under this assumption transfer of atoms occurs from the condensate to the thermal cloud enhancing the condensate decay rate

    The Simon and Simon-Mars Tensors for Stationary Einstein-Maxwell Fields

    Full text link
    Modulo conventional scale factors, the Simon and Simon-Mars tensors are defined for stationary vacuum spacetimes so that their equality follows from the Bianchi identities of the second kind. In the nonvacuum case one can absorb additional source terms into a redefinition of the Simon tensor so that this equality is maintained. Among the electrovacuum class of solutions of the Einstein-Maxwell equations, the expression for the Simon tensor in the Kerr-Newman-Taub-NUT spacetime in terms of the Ernst potential is formally the same as in the vacuum case (modulo a scale factor), and its vanishing guarantees the simultaneous alignment of the principal null directions of the Weyl tensor, the Papapetrou field associated with the timelike Killing vector field, the electromagnetic field of the spacetime and even the Killing-Yano tensor.Comment: 12 pages, Latex IOP article class, no figure

    Quantum optical time-of-arrival model in three dimensions

    Full text link
    We investigate the three-dimensional formulation of a recently proposed operational arrival-time model. It is shown that within typical conditions for optical transitions the results of the simple one-dimensional version are generally valid. Differences that may occur are consequences of Doppler and momentum-transfer effects. Ways to minimize these are discussed.Comment: 14 pages, 5 figure

    Electron transport through strongly interacting quantum dot coupled to normal metal and superconductor

    Full text link
    We study the electron transport through the quantum dot coupled to the normal metal and BCS-like superconductor (N - QD - S) in the presence of the Kondo effect and Andreev scattering. The system is described by the single impurity Anderson model in the limit of strong on-dot interaction. We use recently proposed equation of motion technique for Keldysh nonequilibrium Green's function together with the modified slave boson approach to study the electron transport. We derive formula for the current which contains various tunneling processes and apply it to study the transport through the system. We find that the Andreev conductance is strongly suppressed and there is no zero-bias (Kondo) anomaly in the differential conductance. We discuss effects of the particle-hole asymmetry in the electrodes as well as the asymmetry in the couplings.Comment: Supercond. Sci. Technol. - accepted for publicatio

    Pseudorapidity Distributions of Charged Particles in d + Au and p + p Collisions at sNN\sqrt{s_{_{NN}}} = 200GeV

    Full text link
    The measured pseudorapidity distributions of primary charged particles are presented for d + Au and p + p collisions at sNN={\sqrt{s_{_{NN}}} =} 200 GeV over a wide pseudorapidity range of η{\rm \mid \eta \mid \le} 5.4. The results for d + Au collisions are presented for minimum-bias events and as a function of collision centrality. The measurements for p + p collisions are shown for minimum-bias events. The ratio of the charged particle multiplicity in d + Au and p + A collisions relative to that for inelastic p + p collisions is found to depend only on {}, and it is remarkably independent of collision energy and system mass. The deuteron and gold fragmentation regions in d + Au collisions are in good agreement with proton nucleus data at lower energies.Comment: 4 pages, 3 figures. To appear in the proceedings of Seventeenth International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions (Quark Matter 2004), Oakland, California from January 11-17, 2004. Submitted to Journal of Physics G: Nuclear and Particle Physic

    Strangeness from 20 AGeV to 158 AGeV

    Full text link
    New results from the energy scan programme of NA49, in particular kaon production at 30 AGeV and phi production at 40 and 80 AGeV are presented. The K+/pi+ ratio shows a pronounced maximum at 30 AGeV; the kaon slope parameters are constant at SPS energies. Both findings support the scenario of a phase transition at about 30 AGeV beam energy. The phi/pi ratio increases smoothly with beam energy, showing an energy dependence similar to K-/pi-. The measured particle yields can be reproduced by a hadron gas model, with chemical freeze-out parameters on a smooth curve in the T-muB plane. The transverse spectra can be understood as resulting from a rapidly expanding, locally equilibrated source. No evidence for an earlier kinetic decoupling of heavy hyperons is found.Comment: Contribution to the proceedings of "Strangeness in Quark Matter 2003" (March 2003, Atlantic Beach NC, USA), to be published in Journal of Physics G. 11 pages, 14 figure
    corecore