3,161 research outputs found

    Quantum nondemolition measurement of a nonclassical state of a massive object

    Full text link
    While quantum mechanics exquisitely describes the behavior of microscopic systems, one ongoing challenge is to explore its applicability to systems of larger size and mass. Unfortunately, quantum states of increasingly macroscopic objects are more easily corrupted by unintentional measurements from the classical environment. Additionally, even the intentional measurements from the observer can further perturb the system. In optomechanics, coherent light fields serve as the intermediary between the fragile mechanical states and our inherently classical world by exerting radiation pressure forces and extracting mechanical information. Here we engineer a microwave cavity optomechanical system to stabilize a nonclassical steady-state of motion while independently, continuously, and nondestructively monitoring it. By coupling the motion of an aluminum membrane to two microwave cavities, we separately prepare and measure a squeezed state of motion. We demonstrate a quantum nondemolition (QND) measurement of sub-vacuum mechanical quadrature fluctuations. The techniques developed here have direct applications in the areas of quantum-enhanced sensing and quantum information processing, and could be further extended to more complex quantum states.Comment: 9 pages, 6 figure

    Demonstration of efficient nonreciprocity in a microwave optomechanical circuit

    Full text link
    The ability to engineer nonreciprocal interactions is an essential tool in modern communication technology as well as a powerful resource for building quantum networks. Aside from large reverse isolation, a nonreciprocal device suitable for applications must also have high efficiency (low insertion loss) and low output noise. Recent theoretical and experimental studies have shown that nonreciprocal behavior can be achieved in optomechanical systems, but performance in these last two attributes has been limited. Here we demonstrate an efficient, frequency-converting microwave isolator based on the optomechanical interactions between electromagnetic fields and a mechanically compliant vacuum gap capacitor. We achieve simultaneous reverse isolation of more than 20 dB and insertion loss less than 1.5 dB over a bandwidth of 5 kHz. We characterize the nonreciprocal noise performance of the device, observing that the residual thermal noise from the mechanical environments is routed solely to the input of the isolator. Our measurements show quantitative agreement with a general coupled-mode theory. Unlike conventional isolators and circulators, these compact nonreciprocal devices do not require a static magnetic field, and they allow for dynamic control of the direction of isolation. With these advantages, similar devices could enable programmable, high-efficiency connections between disparate nodes of quantum networks, even efficiently bridging the microwave and optical domains.Comment: 9 pages, 6 figure

    Tunable coupling to a mechanical oscillator circuit using a coherent feedback network

    Full text link
    We demonstrate a fully cryogenic microwave feedback network composed of modular superconducting devices connected by transmission lines and designed to control a mechanical oscillator coupled to one of the devices. The network features an electromechanical device and a tunable controller that coherently receives, processes and feeds back continuous microwave signals that modify the dynamics and readout of the mechanical state. While previous electromechanical systems represent some compromise between efficient control and efficient readout of the mechanical state, as set by the electromagnetic decay rate, the tunable controller produces a closed-loop network that can be dynamically and continuously tuned between both extremes much faster than the mechanical response time. We demonstrate that the microwave decay rate may be modulated by at least a factor of 10 at a rate greater than 10410^4 times the mechanical response rate. The system is easy to build and suggests that some useful functions may arise most naturally at the network-level of modular, quantum electromagnetic devices.Comment: 11 pages, 6 figures, final published versio

    Towards run-time monitoring of web services conformance to business-level agreements

    No full text
    Web service behaviour is currently specified in a mixture of ways, often using methods that are only partially complete. These range from static functional specifications, based on interfaces in WSDL and preconditions in RIF, to business process simulations using executable process-based models such as BPEL, to detailed quality of service (QoS) agreements laid down in a service level agreement (SLA). This paper recognises that something similar to a SLA is required at the higher business level to govern the contract between service producers, brokers and consumers. We call this a business level agreement (BLA) and within this framework, seek to unify disparate aspects of functional specification, QoS and run-time verification. We propose that the method for validating a web service with respect to its advertised BLA should be based on run-time service monitoring. This is a position paper towards defining these goals
    • …
    corecore