1,943 research outputs found

    Covalently Binding the Photosystem I to Carbon Nanotubes

    Full text link
    We present a chemical route to covalently couple the photosystem I (PS I) to carbon nanotubes (CNTs). Small linker molecules are used to connect the PS I to the CNTs. Hybrid systems, consisting of CNTs and the PS I, promise new photo-induced transport phenomena due to the outstanding optoelectronic properties of the robust cyanobacteria membrane protein PS I

    Enhancement of quantum dot peak-spacing fluctuations in the fractional q uantum Hall regime

    Full text link
    The fluctuations in the spacing of the tunneling resonances through a quantum dot have been studied in the quantum Hall regime. Using the fact that the ground-state of the system is described very well by the Laughlin wavefunction, we were able to determine accurately, via classical Monte Carlo calculations, the amplitude and distribution of the peak-spacing fluctuations. Our results clearly demonstrate a big enhancement of the fluctuations as the importance of the electronic correlations increases, namely as the density decreases and filling factor becomes smaller. We also find that the distribution of the fluctuations approaches a Gaussian with increasing density of random potentials.Comment: 6 pages, 3 figures all in gzipped tarred fil

    Josephson Junctions defined by a Nano-Plough

    Full text link
    We define superconducting constrictions by ploughing a deposited Aluminum film with a scanning probe microscope. The microscope tip is modified by electron beam deposition to form a nano-plough of diamond-like hardness, what allows the definition of highly transparent Josephson junctions. Additionally a dc-SQUID is fabricated to verify appropriate functioning of the junctions. The devices are easily integrated in mesoscopic devices as local radiation sources and can be used as tunable on-chip millimeter wave sources

    Transmission through a n interacting quantum dot in the Coulomb blockade regime

    Full text link
    The influence of electron-electron (e-e) interactions on the transmission through a quantum dot is investigated numerically for the Coulomb blockade regime. For vanishing magnetic fields, the conductance peak height statistics is found to be independent of the interactions strength. It is identical to the statistics predicted by constant interaction single electron random matrix theory and agrees well with recent experiments. However, in contrast to these random matrix theories, our calculations reproduces the reduced sensitivity to magnetic flux observed in many experiments. The relevant physics is traced to the short range Coulomb correlations providing thus a unified explanation for the transmission statistics as well as for the large conductance peak spacing fluctuations observed in other experiments.Comment: Final version as publishe

    Statistics of conductance oscillations of a quantum dot in the Coulomb-blockade regime

    Full text link
    The fluctuations and the distribution of the conductance peak spacings of a quantum dot in the Coulomb-blockade regime are studied and compared with the predictions of random matrix theory (RMT). The experimental data were obtained in transport measurements performed on a semiconductor quantum dot fabricated in a GaAs-AlGaAs heterostructure. It is found that the fluctuations in the peak spacings are considerably larger than the mean level spacing in the quantum dot. The distribution of the spacings appears Gaussian both for zero and for non-zero magnetic field and deviates strongly from the RMT-predictions.Comment: 7 pages, 4 figure

    Addition Spectra of Chaotic Quantum Dots: Interplay between Interactions and Geometry

    Full text link
    We investigate the influence of interactions and geometry on ground states of clean chaotic quantum dots using the self-consistent Hartree-Fock method. We find two distinct regimes of interaction strength: While capacitive energy fluctuations δχ\delta \chi follow approximately a random matrix prediction for weak interactions, there is a crossover to a regime where δχ\delta \chi is strongly enhanced and scales roughly with interaction strength. This enhancement is related to the rearrangement of charges into ordered states near the dot edge. This effect is non-universal depending on dot shape and size. It may provide additional insight into recent experiments on statistics of Coulomb blockade peak spacings.Comment: 4 pages, final version to appear in Phys. Rev. Let

    Microwave spectroscopy on a double quantum dot with an on-chip Josephson oscillator

    Full text link
    We present measurements on microwave spectroscopy on a double quantum dot with an on-chip microwave source. The quantum dots are realized in the two-dimensional electron gas of an AlGaAs/GaAs heterostructure and are weakly coupled in series by a tunnelling barrier forming an 'ionic' molecular state. We employ a Josephson oscillator formed by a long Nb/Al-AlOx_x/Nb junction as a microwave source. We find photon-assisted tunnelling sidebands induced by the Josephson oscillator, and compare the results with those obtained using an externally operated microwave source.Comment: 6 pages, 4 figure

    Statistics of Coulomb blockade peak spacings for a partially open dot

    Full text link
    We show that randomness of the electron wave functions in a quantum dot contributes to the fluctuations of the positions of the conductance peaks. This contribution grows with the conductance of the junctions connecting the dot to the leads. It becomes comparable with the fluctuations coming from the randomness of the single particle spectrum in the dot while the Coulomb blockade peaks are still well-defined. In addition, the fluctuations of the peak spacings are correlated with the fluctuations of the conductance peak heights.Comment: 13 pages, 1 figur

    Finite temperature effects in Coulomb blockade quantum dots and signatures of spectral scrambling

    Full text link
    The conductance in Coulomb blockade quantum dots exhibits sharp peaks whose spacings fluctuate with the number of electrons. We derive the temperature-dependence of these fluctuations in the statistical regime and compare with recent experimental results. The scrambling due to Coulomb interactions of the single-particle spectrum with the addition of an electron to the dot is shown to affect the temperature-dependence of the peak spacing fluctuations. Spectral scrambling also leads to saturation in the temperature dependence of the peak-to-peak correlator, in agreement with recent experimental results. The signatures of scrambling are derived using discrete Gaussian processes, which generalize the Gaussian ensembles of random matrices to systems that depend on a discrete parameter -- in this case, the number of electrons in the dot.Comment: 14 pages, 4 eps figures included, RevTe

    Quantum Dots with Disorder and Interactions: A Solvable Large-g Limit

    Full text link
    We show that problem of interacting electrons in a quantum dot with chaotic boundary conditions is solvable in the large-g limit, where g is the dimensionless conductance of the dot. The critical point of the g=∞g=\infty theory (whose location and exponent are known exactly) that separates strong and weak-coupling phases also controls a wider fan-shaped region in the coupling-1/g plane, just as a quantum critical point controls the fan in at T>0. The weak-coupling phase is governed by the Universal Hamiltonian and the strong-coupling phase is a disordered version of the Pomeranchuk transition in a clean Fermi liquid. Predictions are made in the various regimes for the Coulomb Blockade peak spacing distributions and Fock-space delocalization (reflected in the quasiparticle width and ground state wavefunction).Comment: 4 pages, 2 figure
    • …
    corecore